Rowan University

Rowan Digital Works

Theses and Dissertations

9-8-2020

Development and implementation of a coarse-grained Markov
State Model

Brian Chen
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

0 Part of the Bioinformatics Commons

Recommended Citation

Chen, Brian, "Development and implementation of a coarse-grained Markov State Model" (2020). Theses
and Dissertations. 2839.

https://rdw.rowan.edu/etd/2839

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please

onta gradua nN@rowan.e

www.manharaa.com

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F2839&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=rdw.rowan.edu%2Fetd%2F2839&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/2839?utm_source=rdw.rowan.edu%2Fetd%2F2839&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

DEVELOPMENT AND IMPLEMENTATION OF A COARSE-GRAINED
MARKOYV STATE MODEL

by

Brian Chen

A Thesis

Submitted to the
Department of Bioinformatics
College of Science and Mathematics
In partial fulfillment of the requirement
For the Degree of
Master of Science in Bioinformatics
at
Rowan University
June 30, 2020

Thesis Advisor: Chun Wu, Ph.D.

www.manharaa.com

© 2020 Brian Chen

www.manharaa.com

Acknowledgements
Foremost, I would like to thank Dr. Chun Wu, my graduate advisor, teacher, and
mentor. This work would not have been possible without his constant support and
invaluable insights. Additionally, I would like to express my gratitude to all the members
of the Wu Lab, including but not limited to Holli-Joi Sullivan, Griffin Fountain, and
Nicholas Paradis for their help in many collaborative works. Lastly, I would like to thank

my mother and father for their unwavering support and dedication.

il

www.manharaa.com

Abstract
Brian Chen
DEVELOPMENT AND IMPLEMENTATION OF A COARSE-GRAINED MARKOV
STATE MODEL
2019-2020

Chun Wu, Ph.D.
Master of Science in Bioinformatics

Markov State Models (MSMs) are constructed from Molecular Dynamics (MD)
simulation data, high-resolution spatial and temporal information stored in the form of
trajectories, of biological processes, such as ligand-receptor bonding, as a model to
understand detailed kinetic information. Traditional MSM implementations involve a
clustering step that clusters MD trajectories into thousands of experimentally unverifiable
clusters known as “microstates” before lumping them together into “macrostates”. This
work details a novel software implementation, using a combination of R, Python, and
Tcl, that I have created for the purpose of creating a coarse-grained MSM that directly
clusters the MD trajectories into a handful of experimentally verifiable clusters while
maintaining the Markovian property. The coarse-grained MSM implementation was
designed to require minimal technical experience while still being robust enough for
usage in studying a variety of biological processes. In addition, this coarse-grained MSM
implementation has already been used as part of several works to explore the binding
mechanisms of various ligand-receptor complexes that have shown potential in the

treatment of neurodegenerative diseases and various cancers.

v

www.manaraa.com

Table of Contents

AADSTTACT ...ttt ettt ettt e b e st e b e e ehe e e beenaeeenbeenees v
LSt OF FIZUIES ...uvtiiiiieiie ettt ettt sttt e et e st e e e e seesnseenseeees vii
LSt OF TADIES ...ttt sttt st viil
Chapter 1: INtrodUCHIONceeeuiiiiiiieciie et e e e e e e e e e e e e saeeeesseeenenes 1
L1 IMIOTIVALION ...ttt sttt sttt ettt st st esbe et naeens 1
1.2 Biomolecule DYNamiCS........cccvieriiiiiiieeiiieeiieeeee ettt eeaae e s e 1
1.3 MD STMUIATIONS ...ttt et st ettt 2
L4 CIUSEEIINE ...ttt ettt ettt ettt e et e st eesbeesabeenbeesbeeenbeenseennneenne 2
LS IMISIM ettt ettt ettt n ettt e at et st e naeenteeneenneas 4
Chapter 2: Coarse-Grained MSM analysisccccceeriieriienieeiiieniienieeieesre e eieeene e 5
2.1 INErOAUCTION ...ttt ettt sttt e be e st e e beenaeeeas 5
2.2 Installation & SETUPeeeviiieeiieeciie ettt e e e e 5
2.3 Clustering & FeaturiZation...........c.cocuierieeiiienienieeiiesie ettt et sieeeveesenesnneens 9
2.3.1 Clustering Theory L.......c.ccooiieeiiiicieeeeeeeee et 9
2.3.2 Clustering Implementation L............ccceeiiriiiiniiniiienieeeeeee e 11
2.3.3 Featurization TheOTYccoeviiiiieiieiiecieete et 12
2.3.4 Featurization Implementationcccveeeveeeiieenciie e 13
2.3.5 Clustering Theory IL.........c.cccierieiiiieiieieeieee e 14
2.3.6 Clustering Implementation I1............ccccveeviiieiiieniiieeee e 15
2.3.7 Clustering Theory Tccoeiiiieiiieiie et e 15
2.3.8 Clustering Implementation ITL.............ccccieviiiiiiiienieeieeeee e 16
2.3.9 Transition Path Theorycccooiiiiiiiieecce e 21
2.3.10 Transition Path Theory Implementationccccceceeveeviinieneniieneenienens 22
Chapter 3: Coarse-Grained MSM Analysis of G-quadruplex Systemscccceeeveennens 31
3.1 Chapter OVETVIEW ...cccuveiiieiieeiiieeiieeeiteeeiteesteeeereeeeeveeetaeesreeessseessseesnaeesnseeensnes 31
3.2 INErOAUCTIONeuiiiiieciieeteee ettt sttt sttt ae e 31
v

www.manaraa.com

Table of Contents (continued)

3.3 MEthOAS. ..ttt 34
3.3.1 MD Simulation SYStEMScccevieerieeeiieeriieeereeeetreeeieeeereeeereeereeesereeeenes 34

3.3.2 Coarse-Grained MSM ANAlYSiS.....c.cceeveeriiireriiieeiieeeiiee e eeiee e svee e 36

34 RESUILS .ttt st st 38
34,1 CIUSEEIINGuvieiiiieeiieeeieeeeiee ettt e et e e et e e sbeeeaaeesseeesbeeesseeessaeessseeensseeennns 38

342 MM-PBSA ..o e 39

3.4.3. MSM RESUILS ..coeiiiiiiiieiteieeeee e 40

3.4.4 SImulation ReSUILSccceiiiiiiiiiii e 42

3.5 DISCUSSION ...ttt ettt ettt et sb ettt sa ettt sbe et sae e besane e 50
3.6 Other STUAIES.cooueieiieiii ettt et 52
Chapter 4: Conclusion and Future DIir€Ctions.........cceevcveeeriieeiieeiiieeeieeeevee e evee e 61
4.1 CONCIUSION ...ttt ettt st et e sb e eaees 61
4.2 FULUTE DITECLIONS ..ottt ettt ettt st s ens 61
RETETEICES ...ttt ettt et et 63
Appendix A: MaIN.Rcooiiiiii e et 69
Appendix B: functions.Rc.oooiiiiiiiiiece e 70
APPendixX C: fUNCHIONS.PY ..veeuvieiieiieeiieiie et eiteete et eite et stteete bt e saeesbeesseessbeeseesneeenne 81
Appendix D: find unbound frames.tclc.cccoviieiiiiiiiiieiie e 85
APPendix E: CONTIG XL ..coiiiiiiiiciee et 86
Appendix F: RMSD, Atom Contacts, and Last Snapshotsccccceceveevinienenienennnene. 87
Appendix G: Trajectory SNapshotS........cccvieiiieeiiiiciie e 95

vi

www.manaraa.com

List of Figures

Figure Page
Figure 1. Coarse-grained MSM construction flowchartcccoeeiveeciieniieniieeceeeee, 8

Figure 2. Distribution of ligandcociiiiiiiiiiiicieece e 10
Figure 3. Representation of initial CIUStEIING..........ceevuiiiiieiieniieiieie e 12
Figure 4. Representation of recombining unbound frames............ccccceevveeriieenieeecieeenee, 18
Figure 5. Representation of cluster combinationc.ceceeviieiienieniiienieniecieeee e, 20
Figure 6. Plot of the implied timesCales..........c.cevuieriieiienieiieeieee e 25
Figure 7. Plot of Chapman-Kolmogorov test..........cccuveerieeriiiiiriie et 27
Figure 8. NetWork modelccooviiiiiiiiiiiieiee et 30
Figure 9. Structure of DBD1 and Pu24............cooviiioiieeieeeeeeeeeee e 34
Figure 10. CIUStering re€SUlLScueiiiuiiiiiieiiiie et 39
Figure 11. MSM of DBD1/Pu24 COMPIEX.....cceeeiuieriiieiieiieiieeieeeiie et 42
Figure 12. Order parameters of top binding representative trajectory..........ccccveeeveennnee. 44
Figure 13. Order parameters of side to top representative trajectorycceceeeveernennne. 46
Figure 14. Order parameters of bottom to side representative trajectorycc.e........ 48
Figure 15. TMPYP4-RINA MSMooiiiiiiieiieeeeee ettt 53
Figure 16. CX-5/human telomeric DNA MSMccccccoiiiiiiiiiiiiiiiiieeeeeee e 55
Figure 17. CX-5/C-KIT1 MSMcccioiiiiiiieieiee ettt 57
Figure 18. CX-5/MYC MSM.....ooiiiiiieieeieie ettt sttt et ees 59
Figure 19. CX-5/DNA dupleX MSMcocoiiiiiiiieiieiieeieeiteste ettt 60

vii

www.manaraa.com

List of Tables
Table Page
Table 1. MM-PBSA binding €nergiescocccoeevierieniniieniiicnienieeeeneeereeieesre e 39

viii

o AJLb

www.manharaa.com

Chapter 1
Introduction

1.1 Motivation

Ligand-receptor binding is a major biological process in which a ligand, usually
some sort of small molecule, binds to a receptor, some sort of target molecule (Changeux
& Edelstein, 2011). Molecular Dynamics (MD) simulations are a powerful tool that can
be used to obtain high-resolution information about many biological processes and puts
them in a series of snapshots, otherwise known as trajectories (Jiri Sponer & Spackova,
2007). Markov State Model (MSM) analysis, a method to further analyze the kinetic
information provided by MD simulations, traditionally separates these snapshots into
thousands of “microstates” via clustering before performing its analysis (Pande,
Beauchamp, & Bowman, 2010). However, these “microstates” are experimentally
unverifiable. In this thesis, the development of software to perform a modified version of
MSM analysis, hereafter referred to as “coarse-grained MSM analysis”, that uses
“macrostates”, created by clustering those snapshots into a handful of experimentally
verifiable clusters, is detailed and applied to several ligand-receptor systems, providing
invaluable kinetic information.
1.2 Biomolecule Dynamics

Folding and binding are two major biochemical processes essential to biological
activity. Protein folding is the process in which a protein structure determines its 3-
dimensional shape, otherwise known as its tertiary structure (Dill, Ozkan, Shell, & Weikl,
2008). This tertiary structure plays a key role in determining the protein’s biological
function. On the other hand, binding can apply to several biological mechanisms such as

1

www.manaraa.com

but not limited to enzyme-substrate binding or ligand-receptor binding (Changeux &
Edelstein, 2011). Of particular importance to this thesis is ligand-receptor binding,
usually a process in which a small molecule binds to a target structure.
1.3 MD Simulations

Molecular dynamics simulations provide high spatial and temporal resolution in
the form a series of snapshots, otherwise known as a trajectory. MD simulations are
powerful tools that have been used to offer insights into many biological processes such
as protein folding, ligand-receptor binding, and other dynamic processes that cannot be
adequately captured by static methods such as NMR or X-ray crystallography. MD
simulations have become a powerful and valuable tool over the past two decades for
discovering details of biological processes (J. Sponer, Cang, & Cheatham, 2012; Jiri
Sponer & Spackova, 2007; Zhu, Xiao, & Liang, 2013). Molecular modeling techniques
are widely used to understand the binding of small molecules and provide a good
structure model of these complexes. Several studies have used molecular modeling
techniques in exploring the anti-cancer effect of various small molecules (Bhat, Mondal,
Sengupta, & Chatterjee, 2017; Buket, Clement, & DanZhou, 2014; Dai, Carver, Hurley,
& Yang, 2011; Deng, Wickstrom, Cieplak, Lin, & Yang, 2017; Kang & Park, 2009; Ma
etal., 2012).
1.4 Clustering

Clustering is the act of grouping a set of n samples using m features, parameters
of the samples that can be measured for similarity, into &£ groups, otherwise known as
clusters. Various clustering algorithms can be used for any given cluster analysis task and

there currently is not one best algorithm for all tasks. Clustering algorithms can be

2

www.manaraa.com

divided into two primary categories: supervised and unsupervised. Supervised clustering
uses training data, data where the correct clusters have already been determined, to learn
how to cluster the experimental data. Unsupervised clustering does not have training data
and simply applies the algorithm directly to the experimental data. While there are other
subdivisions for clustering algorithms, they do not affect the main topic of this work
significantly and thus they will be excluded from mention. Typically, with MD
simulations the clustering algorithms that are used are unsupervised clustering
algorithms; there are likely many reasons for this but one of them is that there is simply
not enough suitable training data for most systems (Pande et al., 2010). Three
unsupervised clustering algorithms are frequently used in conjunction with MD
simulations: single-linkage, spectral clustering, and £.

Single-linkage clustering performs an analysis of each individual sample
compared against every other individual sample within a given cutoff in order to cluster
the samples. Though typically very accurate, the long runtime of this sort of clustering
limits the amount of clustering problems to which it can be applied to problems that have
a small sample size. Spectral clustering is often an even slower algorithm than the single-
linkage clustering and clusters based on the eigenvalues of a similarity matrix that is
constructed from the original data. Similar to single-linkage clustering, spectral clustering
is often seen as impractical unless the sample size is small. On the other hand, A-means
clustering partitions each sample into one of k clusters such that within-cluster variance is
minimized. Comparatively, k-means clustering is a significantly faster algorithm that can
be run even on relatively large datasets, but may be slightly lesser in terms of accuracy

for clustering MD trajectory frames.

www.manaraa.com

1.5 MSM

Markov State Models are constructed from MD simulation trajectories and are
used to understand detailed kinetic information about biological processes (Pande et al.,
2010). MSMs divide the simulation data into various clusters called “states” and provide
the kinetic information by analyzing the stochastic process of the transition between
states at equilibrium. It maintains the Markovian property in that the model is
memoryless such that the probability to transition to a state is only dependent on the
present state. One of the major issues with the traditional MSM implementation
methodology is that it uses thousands of states called “microstates” that are not

experimentally verifiable.

www.manharaa.com

Chapter 2
Coarse-Grained MSM Analysis

2.1 Introduction

Chapter 2 will discuss the theory and implementation of a coarse-grained MSM
analysis using the software I developed. The general principles of the code and relevant
equations are provided. All MSM analyses were predominantly performed in R, with
some usage of VMD and Python. Some basic requirements to using this software will be
a basic understanding of how to use R graphical interfaces, such as RStudio or RGui, as
well as a basic understanding of VMD and its atom selection language.
2.2 Installation & Setup

This coarse-grained MSM program was developed to run on the Ubuntu operating
system version 18.04 but should be compatible with newer versions. Support for
Windows and Mac operating systems has not been developed but the coarse-grained
MSM program should be compatible assuming the requisite packages support those
operating systems. Development in R was performed using R version 3.6.0 but may
require newer versions based on the requisite R packages. Similarly, Python version 3.5.1
was used in the development of this software but newer versions may be required based
on the requisite Python packages. The list of R packages used in this software include
ggplot2, reticulate, foreach, doParallel, igraph, expm, and R.utils. Installation of these R
packages will be handled by the coarse-grained MSM software and no extra user
installation is required outside of the R programming environment. In addition to
installation of the Python environment, user installation of the following Python

packages, either through pip or Anaconda, and their prerequisites is required: mdtraj,

5

www.manaraa.com

numpy, os, scikit-learn. It is recommended to install the latest version of VMD. After
successful installation of requisite software, create a directory and extract the software
from the archive. The coarse-grained MSM software can be run from the file “main.R”
(see Appendix A). The code must be run as instructed in the subsequent parts of this
chapter and general overviews of each line of code in “main.R” will be discussed. Some
user modifications to the input values are required and these will be noted. Optional
modifications to user input will not be discussed in this thesis but can be derived from the
source code (Appendices A-D). Commented lines, denoted by the symbol “#”, are not
part of the code but may contain helpful user instructions. While the user runs the coarse-
grained MSM analysis in main.R (Appendix A), most of these call functions in
functions.R (Appendix B) or functions.py (Appendix C). Trajectory-related calculations
were performed in Python because most trajectory information is handled fairly robustly
by the Python package “mdtra;”.

Configuration settings can be found in “config.txt” (Appendix E). Line 1 declares
the selection to be defined as the ligand using the mdtraj atom selection language, which
is fundamentally similar to the VMD atom selection language. Edit the text inside the
quotations, “resname SPR”, to the desired selection. Lines 2-4 declare the type of
trajectories being used as inputs, the name of the outputted merged trajectory, and the
merged trajectory’s file type respectively. Edit the text inside the quotations as desired
but note that the trajectory file types must be supported by mdtraj. Line 5 declares the
topology file name and should be edited to fit the user’s system. This software was only
designed to run with PDB topology files, but should also work with any file types
supported by mdtraj. Line 6 can be set to “TRUE”, without the quotation marks, to also

6

www.manaraa.com

calculate the Root Mean Square Deviation (RMSD) values, the measure of the distance
between the atoms of each frame, for each atom of the ligand individually. This does not
impact the RMSD calculation of all ligand heavy atoms combined. Line 7 can be set to
“FALSE”, without the quotation marks, to not calculate the center of mass. Line 8 does
not require editing unless the user desires to change the features file’s filename. Lines 9-
10 declare the minimum k value and the maximum k value respectively, for which the -
means clustering will be run, inclusively. Line 11 can be set to “FALSE”, without the
quotation marks, to not normalize the data in the features file prior to clustering. Line 12
declares the reference frame to be used in the RMSD calculations and does not
necessarily need to be changed. It is recommended from my observations to use a frame
in which the ligand is positionally centralized. Line 13 declares the number of cores to
use for the transition matrix calculations and can be left as 1 if the number of cores is
unknown. Line 14 declares the filename for the finalized cluster file and does not need to

be changed.

www.manaraa.com

- 1. Get atom indices

2. Merge trajectories ‘

-1

3. Find and remove unbound frames
2 using VMD
Unbound Frames
4. Calculate features

5. Clustering (k-means)

6.Selectk
———

unbound frames similar clusters
w4

Output File(s)
1 traj.crd
2 unbound_frames.txt
3 rmsd_prep.txt
4 KMresults/KMresultsK.txt
5 representatives.crd
6 cluster_frames/clusterC.crd
7 combined-clusters.txt
8 TPT/normalisedmatrixT.txt
9 final_mfpt.txt

Primary Method Location

® functions.R
® functions.py

D n

7. Recombine the 7. Visually merge

8. Calculate transmons 1

9. Implied

- —

11. Calculate MFPT
and build network model

10a. Reselect
lagtime if
failed to pass

10. CK Test e

10b. Use
validated
lagtime

v

Figure 1. Coarse-grained MSM construction flowchart. The flowchart follows sequence
of numerically listed instructions along the arrows. Instructions with the same number are
considered to be performed in the same step. The location of the code responsible for
each task is color coded for functions.R (blue), functions.py (orange), and

find unbound frames.tcl (purple). Output files are labelled in green as numbers

corresponding to files in the legend.

www.manharaa.com

Run line 4 of “main.R” to load some of the created functions that are necessary to
perform the coarse-grained MSM analysis and continue running the following lines as
instructed. Line 5 checks to make sure all required R packages have been installed and
proceeds to install any that are missing. Line 6 loads the package “reticulate” which is
necessary for interactions with the Python code. Line 7 loads the created Python
functions that are necessary for the coarse-grained MSM analysis into the R environment.
Lines 10-11 create the necessary directories and load the configuration file. Move all
desired MD simulation trajectories into the directory named “trajs”. It is important to note
that while the software is robust enough to handle trajectories of differing lengths, it is
still highly recommended and more convenient for the user to use trajectories consisting
of the same length. Move the topology file into the working directory and confirm that
the name of the topology file is consistent with the one listed in the configuration file.
Lines 14-15 will extract the atom indices of the selections specified in the configuration
file and merge all the trajectories into a single trajectory that will be created in the
working directory.

2.3 Clustering & Featurization

2.3.1 Clustering theory I. Standard MSM construction typically involves initially
clustering trajectory data into thousands of individual clusters termed “microstates”.
Subsequent analysis is then performed on these microstates before they are hierarchically
lumped into “macrostates”. As there does not exist any experimental evidence indicating
that these thousands of microstates all actually exist, we chose to directly cluster into
experimentally verifiable macrostates. This variance in procedure leads to a more coarse-

grained model which trades finer detail for more experimental testability and greater

9

www.manaraa.com

human understanding. The clustering for coarse-grained MSM construction is divided
into three steps. First, the unbound frames are identified and subsequently removed based
on the number of atom contacts between the ligand and target molecule. The unbound
frames must be removed prior to the clustering via k-means because the distribution of
the unbound frames will likely result in hundreds or thousands of clusters (Figure 2).
Second, the remaining frames are clustered based on RMSD and optionally center of
mass via k-means clustering. Lastly, the clustering results are analyzed and validated

before subsequent merging based on visual expertise.

Figure 2. Distribution of ligand. Top (left) and side (right) views of the distribution of the
ligand, DBD1, positions over the merged free ligand binding trajectories. The less dense
outer distributions are indicative of the unbound frames.

10

(-

www.manharaa.com

2.3.2 Clustering implementation I. Using VMD, load the topology file and the
merged trajectory file. The file “find unbound frames.tcl” (Appendix D) can be loaded
through the Tk Console in order to output all frames in which there are less than a user-
defined number of atom contacts within a user-defined cutoff between the ligand and
receptor are to a separate file called “unbound frames.txt”. Instructions for editing the
“find unbound frames.tcl” script can be found in Appendix D. The script sequentially
searches through all frames of the merged trajectory and stores a list of all frame numbers
in which the cutoff was not met. This definition of the unbound frames by cutoff is part
of what makes this implementation a coarse-grained model, as traditional MSM
clustering directly clusters all of the trajectory data, including the unbound frames, into

thousands of “microstates”.

11

www.manaraa.com

Index1 go

Index 1
neextr Legend
Trajectory 1
Trajectory 2
@
E Data stored Unbound Frames
s in matrix
- Features
Calculate 1 J o2
2 | 3103
Merge 2 Features ol it
£ x4 |21 —
Index 100 &= E K 5 34
Index1 po § £ 6 as
7]ss
0] 88 - . Output to
" "
E "rmsd_prep.txt" KMRedsultsK.txt
£ Features N u‘:n: : F
8 M
= 1 o2 s
2 3 103 2 2
3 fas 3 1
Remove 4z - 42
s |s3e . s |3
Index 200 & Unbound 6 as . s 12
Index 100 & Frames 7 53 Clustering 7 1
Find F30fe1z . = E
Unbound Taliz . = K
Frames go| 3282 ol
91] 33 9] 3
100] 9222 ... wol &
1] 219 .. 11 s
|gg_i:§s[190] 443 .. 190 L
Igiligss[Outputto "unbound_frames.txt"

101-110

31323334353637383940
8182...8990101102...109
Indices [110191192... 200

Indices
191-200

Figure 3. Representation of initial clustering. Trajectories are depicted as bars with color
coding to indicate the trajectory number and unbound frames.

2.3.3 Featurization theory. Root mean square deviation (RMSD), in terms of

MSM analysis, is a measure of the difference between the positions of a selection of

12

www.manharaa.com

atoms in a given frame compared to a reference frame. RMSD is calculated according to

the equation:

RMSD =

For a given atom, 8 is a coordinate position while 8 is the reference position. Center of
mass is a measure of the point where the weighted relative position of a distribution of

mass in space equals zero and is calculated according to the equation:

24 (x x m)

Center of Mass = Z’l"—m
For a given atom, x is a coordinate position and m is the mass.

2.3.4 Featurization implementation. From this point on, the user will only need
to run code in main.R. Line 25 is optional and is only necessary if the user wishes to
change the RMSD reference frame prior to feature calculation. Run line 28 to call a
function (lines 44-71 of Appendix C) to calculate the RMSD of the ligand heavy atoms
and possibly also the RMSD of each individual heavy atom of the ligand as well as the
center of mass of the ligand heavy atoms (lines 73-121 of Appendix C) over all the
frames of the merged trajectory sequentially based on the user settings in the
configuration file. Heavy atoms are defined as non-hydrogen atoms. The RMSD
calculations are performed according to the equation listed in section 2.3.3. Similarly, the
center of mass calculations for each of the x, y, and z axes are performed according the
equation for center of mass listed in section 2.3.3. The RMSD and center of mass values

are outputted in Angstroms. The center of mass calculations can only be performed for

molecules with heavy atoms consisting of carbon, nitrogen, oxygen, phosphorous, or

13

www.manaraa.com

sulfur atoms. Line 29 combines the feature information obtained in line 28 into a single
data table. Rows denote the frame number while columns are ordered such that the
overall ligand RMSD is in the first column followed sequentially by a separate column
for the individual RMSD values of each of the ligand heavy atoms followed by three
columns for the X, y, and z coordinates of the center of mass if these options were
selected in the configuration file. Next, it deletes the rows corresponding to the list of
frame numbers in the “unbound frames.txt” file and outputs the remaining data to the file
under “rmsdfile” in the configuration settings. This step effectively removes all of the
previously defined unbound frames prior to the actual clustering step and is a major part
of how this implementation is a coarse-grained model.

2.3.5 Clustering theory II. It is important to note that this analysis was initially
designed for usage in analyzing G-quadruplex complexes, but is robust enough to be used
for the analysis of many biological processes. The clustering used in this coarse-grained
MSM analysis is k-means clustering. There are several reasons for choosing to use -
means clustering over the potentially more accurate single-linkage clustering or spectral
clustering. Firstly, the sample size for the clustering of trajectory frames tends to be in the
thousands or tens of thousands, which makes single-linkage and spectral clustering highly
impractical without significant computational resources and hefty hardware. Secondly,
single-linkage clustering implementations are traditionally run on a single feature while
the inherently visible shape of many G-quadruplex structures proved indicative that an
additional set of features, center of mass, would prove to be highly valuable in
determining how to cluster the data. This can be seen in Figure 2, which shows the

distribution of the ligand simulated with a G-quadruplex structure over the entirety of the

14

www.manaraa.com

frames. Lastly, a practical test using k-means clustering with the aforementioned features
resulted in the same number of clusters and approximately similar percent abundance
values for each cluster as a single-linkage algorithm by GROMACS using only RMSD

after the results of both clustering algorithms were separately visually merged.

2.3.6 Clustering implementation II. Line 32 of main.R (Appendix A) will call a
function (lines 123-142 in Appendix C) to cluster the data in the “rmsdfile”. The data is
normalized prior to clustering and clustering is performed through a k-means algorithm
where the user defined a minimum bound for K and a maximum bound for K such that
clustering will be performed for each K from minimum to maximum inclusively. The
silhouette indices for each of these cluster iterations is calculated and stored in the
directory “KMresults” as “KMSIresults.txt”. The results of each cluster iteration are also
stored in the directory “KMresults” as separate “KMresults#.txt” files, where # is the
value of K and the data is stored as a single column containing the cluster ID for each
frame sequentially. Line 33 calls a function (lines 92-109 of Appendix B) to plot the
silhouette indices in R as a measure of how accurate each clustering iteration was
compared to the others. Typically, picking the K corresponding to the greatest silhouette
index will result in a good clustering result. Line 36 requires the user to change the value
to the K value picked in the previous step. This will allow the rest of the code to know
which K value to use for subsequent validation and other analyses.

2.3.7 Clustering theory III. Clustering rarely produces absolutely perfect results
for complex datasets; thus, validation and other analyses are required. Firstly, the

identification of a representative of each cluster can be obtained by finding the frame for

15

www.manaraa.com

each cluster that has an RMSD value nearest the mean RMSD value for that cluster.
Next, validation of the integrity of each cluster can be obtained by visually observing
every frame for each cluster and comparing to see if the majority of each cluster is
similar. Lastly, clusters can be merged based on visual expertise through comparison of
the representatives for each cluster. This should result in a handful of “macrostates” that
are mostly experimentally verifiable, unlike the unverifiable thousands of “microstates”
that are used in traditional MSM analyses. The clustering theory detailed in these three
clustering theory sections (2.3.1, 2.3.5, 2.3.7) shows why this MSM analysis is
considered coarse-grained.

2.3.8 Clustering implementation III. Line 39 creates a trajectory containing the
representative frames of each cluster for the previously selected K value. First, the
representative frame number for each cluster is found via lines 118-199 in functions.R
(Appendix B). This function (lines 118-199) loads all of the feature data and combines it
with the cluster data for each frame (lines 119-133). It then adds all the frames that were
removed as unbound frames back into the dataset and sets the unbound frames as a
separate cluster (lines 136-162). It then iterates over the dataset to obtain the average
RMSD value of each cluster (lines 165-179). It iterates again over the dataset while
comparing the RMSD value of each frame against the mean value of the respective
cluster to obtain the frame with the least difference from the mean RMSD value for each
cluster (lines 182-195). Line 42 of main.R calculates the number of frames for each
cluster. This function (lines 201-215 of Appendix B) iterates over the dataset and counts
the number of times each cluster appears. The frames per cluster can be shown as a

percentage or as a raw value based on whether the user declares the “percentage” as

16

www.manaraa.com

“TRUE” or “FALSE”. The example given in Appendix A will show the result as a

percentage.

17

o AJLb

www.manharaa.com

Cluster
Number

"unbound_frames.txt"

P NOOAWN R
PFNWNRNR

31323334353637383940

5 30 A 8182...8990101102...109
'E a1 3 110 191 192 ... 200

g0 | 2

91 3

100§ 3

314 3 =

Recombine

190§ 1 Unbound

| Frames

Cluster
Number

1 1
2 2
3 1
4 2
5 3
6 2
7 1
30 1
31 o
40 o
41 3

x

o

=

£ 80 2
81 o
90]
91 3
100 [3
101 j o
110 | 3
111 | 3
190 1
191 o
200 j o

Figure 4. Representation of recombining unbound frames. Note that the unbound frames
are inserted back into this representation as cluster 0 (this may not necessarily be the case
for the actual software implementation).

18

www.manharaa.com

Line 45 of main.R creates a trajectory for each cluster that contains all of the
frames in the respective cluster. First, a function to find the frames that belong to each
cluster (lines 223-245 of Appendix B) iterates over the dataset checking the cluster
number and adds the frame number to the end of a list containing all the frames for that
cluster. Each of these lists are then outputted to files in the directory “cluster frames” by
cluster number. Then, a function to create separate trajectories containing all the frames
for each cluster (lines 163-186 of Appendix C) loads the merged trajectory and then
subsets the list of frames for each cluster before outputting the trajectory into the
directory “cluster frames”. Visual analysis of the representatives and validation
trajectories can be used to identify the integrity of the clustering results as well as the
selected K value. If validation identifies that the clustering analysis produced
significantly inaccurate results, changing the reference frame or the selected K value and
then repeating the previous steps can improve the integrity of the clusters. After
validating the clusters, running line 48 in main.R will recombine the unbound frames
(lines 247-272 in Appendix B) that were previously removed back into the data set as
cluster 1 (lines 253-270) and renumbering the other clusters to follow while still

maintaining their identities (lines 248-250).

19

www.manaraa.com

Clustering Results

Cluster
Number

P NOOUVBAEWNR
H HNwNHNn-I

Index

31 4
80 2
81)] 3
100] 4
101] 4

200 S

U

Output to
"combined_clusters.txt"

Cluster
Number

Index
w
s

¢S

Cluster1 Cluster 2 Cluster 3
Cluster 4 Cluster 5

Combine Clusters

B ¢

Cluster1 Cluster 2

8

Cluster 3

Legend
R <+ﬂ.>
t
eceptor N/

Ligand @

@ data = combine_clusters(list_to_combine = list(c(1,5), c(3,4)))

Important!
For any set of clusters that you are
trying to combine, list the lowest
numerical cluster first.

Figure 5. Representation of cluster combination. The actual data transformation (left) and
a visual example (right) of how to merge the clusters are shown. The command shown in
blue is line 57 of main.R (Appendix A). The visual example of the clusters depicts the
receptor as a green crystal-like object in complex with the ligand, a red sphere.

Line 57 of main.R requires user input to merge similar clusters. This is very

important as it helps reduce the number of clusters to an experimentally verifiable

amount and is a major part of what makes this analysis a coarse-grained MSM. User

input is required in similar syntax as shown in line 57 of Appendix A such that the lowest

20

www.manaraa.com

clusters to be combined are listed first. Detailed instructions are shown in the commented
lines of Appendix A (lines 51-54). The function (lines 280-317 of Appendix B) iterates
over the entire dataset multiple times as specified by the user input, searches for values
matching the user input, and then sets those values equal to the lowest value given in the
user input for that iteration (lines 282-291). The function then proceeds to clean up the
values by finding the unique cluster values remaining (lines 294-300), sorting them, and
then subsequently renumbering the values to increment from 2 onwards while
maintaining the cluster identities and order (lines 303-313). Line 60 of main.R writes the
data out to a file “combined _clusters.txt” for further use. Line 63 is an optional line that
obtains the frames per cluster, representatives, and validation trajectories for the
combined clusters. The theory and implementation remain the same and only the data has
changed.

2.3.9 Transition path theory. Count matrices are created for specified lagtimes
(7), increasing in magnitude, by counting the number of observed transitions between
discrete states such that the count of transitions from state i to state j (c;) is the sum of the
number of times each of the trajectories were observed in state i at time 7 and in state j at
time t + 7, forall t < ¢, — T (Prinz et al., 2011). The count matrices were

symmetrized (sym;;) such that:

Cij + Cji
Ssym;j = sym;; = —a
and then row-normalized (norm;;) such that:

sym;;

normij = S —
j:l Syml]

21

www.manaraa.com

For the purpose of determining the lag time at which the model has converged, an

implied timescale of each cluster is calculated according to the equation:

T
In p(7)

Ty =

in which i is an eigenvalue of the transition matrix, for all specified lagtimes and
plotted. The implied timescale of the first cluster is not included in the plot as the
eigenvalue is always 1 and thus contributes no information (Noé¢, Horenko, Schiitte, &
Smith, 2007). Further validation that the model had converged was performed through
the Chapman-Kolmogorov (CK) test using the equation:

Pyp(nt) = [Pysm(D)]"
in which P is the transition probability at a specific time, n is a constant, 7 is the lagtime.
Thereafter, the mean first passage times (Fr) at a specified optimal lag time, found via
the implied timescales and Chapman-Kolmogorov test, can be calculated according to the

formula:

with the boundary condition Frs = 0, where 7 is the lag time used to construct the
transition matrix P(7). Standard deviations can be obtained by performing the same mean
first passage time calculations on a range of values near the optimal lag time. A network
model can then be generated based on the count matrix at the optimal lag time with a
cutoff of a desired number of transitions.

2.3.10 Transition path theory implementation. Line 68 of main.R (Appendix
A) is an optional line used to declare a series of lagtimes for the subsequent steps. The

software has already generated a default series of lagtimes, incrementing by 1 from 1 to
22

www.manaraa.com

the length of the shortest MD trajectory prior to merging, in a previous step. However,
the user can opt to set a larger increment thereby saving some time and detailed
instructions for how to declare line 68 are shown in lines 66-67. Typically, it is necessary
at minimum to set a series such that it includes 1, and steps by 10 from 10 to the length of
the shortest MD trajectory rounded to the nearest 10. The example shown in Appendix A
denotes a seriesof 1,2, 3,4,5,6,7, 8,9, 10, 20, 30, 40, 50, ... 490, 500. Line 70
calculates the transition matrices according to the equations mentioned in section 2.3.9
and outputs the counted, symmetric, and normalized matrices into corresponding text
files in the TPT directory. The functions (lines 353-386 and 388-434 of Appendix B)
responsible for this use a parallel processing technique to heavily speed up the overall
calculations based on the value set in line 13 of the configuration file. Lines 362-371 are
performed for each lagtime in the series and iterate over the entire dataset while counting
the number of observed transitions from i to j as detailed in section 2.3.9 for each
individual trajectory prior to the merging. Lines 374-383 perform the same actions as
lines 362-371 but are only used instead of lines 362-371 when the original input
trajectories consist only of a single trajectory.

Line 73 of main.R (Appendix A) creates a plot of the implied timescales, an
example is shown in Figure 6, for the previously declared lagtimes using the matrices
calculated in the previous step. The implied timescales function can be found in lines
436-500 of Appendix B and calculates the implied timescales according to the equation
listed in section 2.3.9. The function uses singular value decomposition for the calculation
of the eigenvalues as the matrices used in MSM analyses fulfill the conditions such that

values obtained by singular value decomposition will be equal to that of eigen

23

www.manaraa.com

decomposition. The user can choose to use the eigen solver to calculate the eigenvalues
by setting the variable f to any string other than “svd”. This is not recommended,
however, as the eigen solver in R often has many issues when solving certain matrices.
Lines 439-475 calculate the eigenvalues for each state at each of the previously specified
lagtimes and stores the data in a matrix for further use. Lines 477-482 are responsible for
performing the mathematical equation used for calculating implied time detailed in
section 2.3.9 and then preprocessing the data for plotting. Lines 484-499 are responsible
for the automated creation of a customized plot that shows the implied timescales with
color coded states and optional logarithmic axis representations. Lines 76-77 of main.R
are optional but recommended lines that can be used to refine the implied timescales plot
for use in generating a good figure for use in publications. Line 76 is very similar to line
68 and is used to redefine the lagtimes in order to remove any lagtimes where the
matrices may prove unreliable. These lagtimes are typically closer towards the maximum
lagtime value as there is significantly less data to work with when generating the count
matrices. Line 77 adds an option, log vy, to the implied timescales function that is set to
TRUE by default to show a logarithmic y-axis which is often more useful when looking

at implied time, but provides less information on finding unreliable data.

24

www.manaraa.com

500 -
-3

Implied Time

st osssssasrtt e
o -r""'"""’ ._Na.‘ o e
PO g ha o = 2 ad

0 200 400 500
Lagtime

Figure 6. Plot of the implied timescales. States 2, 3, and 4 (side, top and bottom binding
respectively) are shown. The lines have stabilized and all three bound states are
converged by roughly 250 ns. Timescales are only shown up until 750 ns as the transition
matrices after that are significantly less reliable.

Line 81 of main.R calls a function (lines 502-627 of Appendix B) that is
responsible for creating the plot of the CK test. An example of the CK test is shown in
Figure 7. User input is required for the option x and it must be set a value in the series of
lagtimes declared in line 68. It is typically recommended to pick a value that has a large
number of divisors and thus values that are multiples of 100 are highly recommended.
Choosing a value that is not a multiple of 100 may lead to inaccuracies, insufficiencies,
or legend errors when viewing the plot. User input is also required for the option cluster
and it will affect which cluster the CK test is performed on. The recommended values for
cluster are either the number of the most abundant cluster that is not unbound or the

number of the unbound cluster if it is the most abundant. There are several optional

25

www.manaraa.com

variables that the user can choose to declare: final, steps, user base lagtimes,

base lagtimes, useBasin, and basin. These values are respectively used to cut off
unreliable data, declare step size, declare whether or not the user intends to declare their
own base lagtimes, the series of base lagtimes the user wants to use, declare whether or
not to use basins instead of clusters, and the basin the user wants to use. It is not
recommended to change the optional values, other than final, unless the user has an
advanced understanding of the code used in lines 502-627 of Appendix B. Final can be
changed to any value less than the value set for x so as to set the maximum value of the
x-axis. Lines 506-534 are responsible for preprocessing and calculating the base lagtimes
if the user did not declare any. Lines 535-551 are responsible for performing the
Chapman-Kolmogorov equations detailed in section 2.3.9 on each of the matrices from
the base lagtimes and storing the data. Lines 552-626 are responsible for preparing the

data for plotting and the subsequent plotting of the CK test results.

26

www.manaraa.com

*-30
=60

N 25 90

Probability for Basin: Basin1l
J/

N =100
*\'-_;_\ _ ~+-150
\‘\._{Q ~e__ 180
e e 8 300
e e .
i - 450
==
=
e
e
0.6-
500
Time (ns)

Figure 7. Plot of Chapman-Kolmogorov test. Shows the probability for Basin 11. Basin
11 is indicative of the probability that the simulation will remain in cluster 3, the most
stable state (top binding mode). Each line denotes the approximation of a model for that
given lag time. The line for 0 ns is the actual simulation data. As the line for 0 ns falls
between the lines from 180 ns and 450 ns, it is clear that the model closely approximates
the simulation between lag times of 180 ns and 450 ns.

The plots of the implied timescales and CK test should be interpreted together.
The implied timescales plot allows the user to find an approximation of an optimal
lagtime at which the system has reached equilibrium. This is defined by an area at which
all states have begun to either plateau or oscillate between near constant boundaries and
can be seen in Figure 6. The CK test allows the user to validate that the model is a
sufficient representation of the actual data. This can be confirmed by noting which lines
the line for lagtime 0, which represents the raw trajectory data, falls between and can be
seen in Figure 7. The lines which the line for the raw trajectory is consistently between

represents the minimum (lower line) that the optimal lagtime can be and an upper bound

27

www.manaraa.com

showing that the system has sufficiently relaxed. If the line for the raw trajectory does not
fall between at least two lines, then either the user is using the wrong cluster for the CK
test or the model is not sufficiently representative of the data.

Line 83 of main.R (Appendix A) requires user input to set the option
optimal_lagtime to the value of the optimal lagtime obtained from the implied timescales
and CK test. The function (629-700 of Appendix B) then proceeds to calculate the mean
first-passage times for the given lagtime according to the equation listed in section 2.3.9.
Lines 632-681 consist of a complex algorithm that automatically builds the system of
equations necessary for the mean first-passage time calculations regardless of the number
of states. Lines 683-699 are responsible of solving the system of equations, storing the
results for further use, and returning the results to the user. Line 84 of main.R calls a
function (lines 708-729 of Appendix B) to calculate a standard deviation for the mean
first-passage times and requires the user to input 3 numbers such that the first is a lower
bound, the second is an upper bound, and the third is the step size. In the example shown
in Appendix A, this calculates the standard deviations between lagtimes of 200, 210, 220,
230, 240, 250, 260, 270, 280, 290, and 300. It is recommended that the user use two
equidistant values from the optimal lagtime with a step size of 10.

Line 85 of main.R calls a function (lines 731-774 of Appendix B) to generate a
network model for a given lagtime. The user must set the lagtime equal to the optimal
lagtime, declare a cutoff for the minimum number of transitions necessary to show an
edge, and optionally declare a seed that affects only the graphical representation of the
model. The cutoff is typically recommended to be set as 1 so that all observed transitions

are shown while the seed does not matter except to get the same graphical representation

28

www.manaraa.com

for the same seed. The network model is built using the R package igraph and represents
each state as a node (circle) and the transitions as edges (lines). The edges are labelled
with the number of transitions observed from a source state to a sink state. These labels
are color coded such that the color of the label matches the color of the source node. An
example of a network model is shown in Figure 8. Lastly, line 87 of main.R calls a
function (lines 776-788 of Appendix B) to output the results of the mean first-passage
time calculations to a text file containing a matrix such that the values are the mean first-
passage times, the row number is the source state and the column number is a sink state.
There are two optional values for the user to declare: divisor is the number by which to
divide the mean first-passage time values if the user desires to convert units and decimals
is the number of decimal places to which the values should be rounded. The data is
outputted to a file called “final mfpt.txt”. This concludes the coarse-grained MSM

analysis.

29

www.manaraa.com

Figure 8. Network model. Shows the transitions between the (1) unbound, (2) side, (3)
top, and (4) bottom states. Edge labels indicate the number of observed transitions and
are color coded such that the color of the label matches the source of an outgoing
transition.

30

www.manharaa.com

Chapter 3
Coarse-grained MSM Analysis of G-quadruplex Systems

3.1 Chapter Overview

Chapter 3 serves as a demonstration of the real application of the coarse-grained
MSM analysis for a ligand binding to a G-quadruplex. The following are several slightly
modified excerpts from a soon-to-be submitted manuscript that was developed from an
older version of the coarse-grained MSM software (Chen, Fountain, Sullivan, Paradis, &
Wu, 2020). The final section of chapter 3 will also include several sets of results obtained
from performing the coarse-grained MSM analysis (Mulholland et al., 2020; Sullivan,
Chen, & Wu, 2020).
3.2 Introduction

A G-quadruplex consists of four guanine base pairs (G-tetrads) stabilized by
Hoogsteen hydrogen binding and pi-pi stacking interactions (Suntharalingam, White, &
Vilar, 2009). The G-tetrads form a planar arrangement within the structure and are further
stabilized by the presence of monovalent cations, such as K and Na' ions, interacting
with guanine O6 carbonyl groups (Hsu et al., 2009). G-quadruplexes have been found in
the promoter regions of numerous genes, including various oncogenes such as MYC, c-
KIT, VEGF, and KRAS (Agarwal et al., 2011; Agrawal, Hatzakis, Guo, Carver, & Yang,
2013; Harikrishna, Kotaru, & Pradeepkumar, 2017). Investigations of new quadruplex-
binding ligands that can stabilize the quadruplex structure have gained interest over the
past two decades (Phan, Modi, & Patel, 2004; Ruggiero & Richter, 2018). Ligand

binding-induced stabilization of the promoter G-quadruplex is being explored as a cancer

31

www.manaraa.com

therapy because of its ability to downregulate oncogene expression (Ambrus, Chen, Dai,
Jones, & Yang, 2005; Neidle, 2016; Tawani, Mishra, & Kumar, 2017).

Overexpression of the MYC oncogene has gained a lot of attention due to its
common genetic aberrations found in various types of human cancer cells, including
breast (Watson, Safneck, Le, Dubik, & Shiu, 1993), prostate (Hawksworth et al., 2010),
lung (Rapp et al., 2009), cervical (J Wu, 1996), colon (Smith, Myint, & Goh, 1993),
small-cell lung cancer (Barr et al., 2000), and lymphoma (Kim, Evans, Dubins, &
Chalikian, 2011; Magrath, 1990). The MYC gene encodes transcription factors, which
regulate gene expression in many important biological processes such as cell growth,
apoptosis and proliferation (Boddupally et al., 2012). Within the MY C promoter region,
an important element, termed nuclease-hypersensitivity element II1; (NHE III,), is
required for 80-95% of MYC transcription (Cooney, Czernuszewicz, Postel, Flint, &
Hogan, 1988; T. L. Davis, Firulli, & Kinniburgh, 1989; Mathad, Hatzakis, Dai, & Yang,
2011). Pu27, the major purine rich strand of NHE III;, (Ambrus et al., 2005; Chung,
Heddi, Hamon, Teulade-Fichou, & Phan, 2014; J. T. Davis, 2004) forms G-quadruplex
structure and ligand-binding induced stabilization of the MYC G-quadruplex has been
shown to downregulate MY C expression as a cancer therapy (Ambrus et al., 2005;
Tawani et al., 2017). In one study, suppression of MYC expression was observed when a
Burkitt’s lymphoma cell line was treated with TMPyP4, which stabilized the G-
quadruplex (Tawani et al., 2017). Two other studies have also shown that quindoline
derivatives stabilize the MY C G-quadruplex and reduce expression of MYC in cancer

cells (Che et al., 2018; Deng et al., 2017). Therefore, the use of small molecules to

32

www.manaraa.com

stabilize the MY C G-quadruplex and consequently decrease MY C expression is an
attractive anti-cancer therapeutic approach.

In an attempt to identify a new class of MYC G-quadruplex stabilizing ligands,
Felsenstein et al. employed a small molecule microarray to screen 20,000 compounds
from ChemBridge and ChemDiv repositories (Felsenstein et al., 2011), which yielded
compound 1 (ChemDiv No. D089-0563), a crescent-shaped structure containing a G-
quadruplex binding disubstituted benzofuran scaffold (hereafter referred as DBD1).
Measurement of the binding affinity of DBD1 by surface plasmon resonance gave a Kq
value of 4.5 £ 1.4 uM, which is sufficient to elicit a biological response (Neidle, 2016).
DBDI, a G-quadruplex stabilizing ligand, also exhibited the ability to selectively inhibit
MY C gene expression through stabilization of Pu27 in the MYC promoter region and
induced apoptosis in cancer cell lines while having minimal toxicity on normal peripheral
blood mononucleocytes (Neidle, 2016; Pany, Bommisetti, Diveshkumar, &
Pradeepkumar, 2016). Although the high-resolution complex structure of DBD1 with the
MY C G-quadruplex of Pu27 has not been obtained due to the polymorphic structure of
Pu27, the NMR structure of a derivative, Pu24, (PDB: 2MGN) in complex with a

different ligand has been solved.

33

www.manaraa.com

Figure 9. Structure of DBD1 and Pu24. Side view (A) and cartoon representation (B) of
the Pu24 G-quadruplex (PDB ID: 2MGN) and the 2D structure of DBD1 (C). The G-
tetrads are highlighted in red, green and cyan. The 5’ and 3’ ends are represented by red
and blue spheres, respectively. K* cations are represented by yellow balls. The planar
core region of the DBD1 structure is shown by a black box.

In this study, we employed extensive free ligand binding MD simulations to probe
the binding of DBD1 to a MYC G-quadruplex derivative, Pu24 (PDB: 2MGN).
Subsequent k-means clustering analysis of the MD simulation data were evaluated for
determining the major binding modes. Molecular Modeling Poisson-Boltzmann Surface
Area (MM-PBSA) analysis was evaluated for determining the energetics of the major
binding modes. MSM analysis is performed to examine the binding pathway and kinetic
rate information. Order parameters are calculated for representative trajectories.

3.3 Methods

3.3.1 MD simulation systems. A total of three systems were constructed: one
ligand-only system, one DNA-only system, and one unbound DNA-ligand system. Each
system was solvated in a water box of truncated octahedron with 10 A water buffer plus

Cl or K" as counter ions to neutralize the system and 0.1 M KCI. A refined OL15 version

34

www.manaraa.com

of the AMBER nucleic acid force including corrections of several backbone torsion angle
parameters (i.e. parm99bsc0 + yors + €/Cor1 + Por1) was applied to represent the DNA
fragment. The TIP3P water model was used to represent water molecules, and the K*
model developed by Cheatham group was used to represent the K™ ions (Joung &
Cheatham, 2008). The force field for DBDI1 ligand was obtained using standard AMBER
protocol: the molecular electrostatic potential (MEP) of DBD1 was calculated at the
HF/6-31G* level after its geometry optimization at the same theory level; then MEP was
used to determine the partial charges of DBD1 atoms using Restrained Electrostatic
Potential/ RESP method with two stage fitting; and other force field parameters were
taken from the AMBER GAFF2 force field.

The simulations for each system were run using the AMBER 16 simulation
package. The simulation protocols followed our early studies which are briefly described
here. The starting points of the MD simulations for DBD1 to the G-quadruplex involved
two different initial starting unbound points, top and bottom, with a separation of ~15 A.
Each unbound DNA-ligand system underwent an additional 1000 ps pre-run at 500 K to
ensure that the position and orientation of the free ligand were randomized before a
production run at 300 K; during this pre-run, the receptors position remained fixed.
Thirty-three independent runs at 300 K were carried out using random initial velocities. A
run at 300 K, included a short 1.0 ns molecular dynamics in the NPT ensemble mode
(constant pressure and temperature) to equilibrate the system density and production
dynamics in the equivalent NVT ensemble mode (constant volume and temperature).
SHAKE was applied to constrain all bonds connecting hydrogen atoms, enabling a 2.0 fs

time step in the simulations. The particle-mesh Ewald method was used to treat long-

35

www.manaraa.com

range electrostatic interactions under periodic boundary conditions (charge grid spacing
of ~1.0 A, the fourth order of the B-spline charge interpolation; and direct sum tolerance
of 107%). The cut off distance for short-range non-bonded interactions was 10 A, with the
long-range van der Waals interactions based on a uniform density approximation. To
reduce the computation, non-bonded forces were calculated using a two-stage RESPA
approach where the short range forces were updated every step and the long range forces
were updated every two steps. Temperature was controlled using the Langevin thermostat
with a coupling constant of 2.0 ps. The trajectories were saved at 50.0 ps intervals for
analysis.

3.3.2 Coarse-grained MSM analysis. 33 trajectories (1000 ns each) of the DNA-
ligand system were combined into one trajectory. Using VMD, all frames in which there
were less than 13 atom contacts, at a distance less than 3A, between the G-quadruplex and
the ligand were separated as the unbound state (Humphrey, Dalke, & Schulten, 1996). The
trajectory was then superimposed based on the nucleic backbone using MDtraj and
calculations for RMSD as well as center of mass of the ligand heavy atoms were performed
(McGibbon et al., 2015). k-means clustering, performed using scikit-learn, was then used
to classify the remaining frames into various states (Pedregosa et al., 2011). Clustering was
performed for k£ between 2 and 30 inclusively, using the silhouette index as the metric for
similarity of clusters (Pedregosa et al., 2011; Rousseeuw, 1987). It was determined that
k=4 had the greatest silhouette index and the most representative frame for each cluster
was determined by calculating the mean RMSD for each cluster and finding the frame with
the least difference from the mean. Further validation of the clustering was performed by

creating a trajectory for each of the clusters containing all of the frames in each cluster and

36

www.manaraa.com

visually confirming the similarity within each cluster. Through visual analysis of the cluster
representative frames, two clusters were determined to be highly similar and were thus
combined. The unbound frames were then reintroduced as a single cluster resulting in a
total of four clusters, observed to be top binding pose, side binding pose, bottom binding
pose, and unbound.

Count matrices were then created for lagtimes (7) of 1, 10, 20, 30 ... 1000 ns by
counting the number of observed transitions between discrete states such that the count of
transitions from state 7 to state j (c;) is the sum of the number of times each of the
trajectories were observed in state i at time ¢ and in state j at time t + 7, forall t <
tmax — T (Prinz etal., 2011). The count matrices were symmetrized (sym;;) such that

Ci]+

Cji .
. ~ and then row-normalized (normj;) such that norm;; =

sym;j = symy; =

sym;;

> ;:,11 — For the purpose of determining the lag time at which the model has converged,
the implied timescale of each cluster was calculated for all lagtimes and plotted (Figure
6). The implied timescale of the first cluster is not included in the plot as the eigenvalue
is always 1 and thus contributes no information (Noé¢ et al., 2007). Further validation that
the model had been converged was performed through the Chapman-Kolmogorov test
(Figure 7) (Prinz et al., 2011). A network model (Figure 8) was then generated based on
the count matrix at a lag time of 250 ns with the cutoff for a directed edge in the network
being set at 300 transitions (Csardi & Nepusz, 2006). Thereafter, the mean first passage

times (Fyr) at a lag time of 250 ns and the standard deviations from lag time 250 ns to 750

ns were calculated according to the formula

37

www.manaraa.com

Fif = T+ X jzr P;jFj, with the boundary condition Fsr = 0, where 7 is the lag time
used to construct the transition matrix P(7).
3.4 Results

The distribution of DBD1 over the course of all 33 binding simulations, represented
by a single atom, was calculated. From the top view and side view, almost every surface
of the DNA G-quadruplex was sampled by the ligand, suggesting that a good position
sampling has been achieved by our simulation protocol. The Root Mean Square Deviations
(RMSD) of both the DNA backbone and ligand were calculated for all the runs of the free
ligand binding simulations. Atom contacts between the DNA structure and the drug
molecule were calculated using an atom-to-atom distance cutoff of 3.0 A. The flat RMSDs
and atom contacts after 250 ns were observed in the most of trajectories, indicating the
convergence of the binding simulations. The last snapshots can be found in Appendix F
and of the 33 trajectories, final binding poses at 1001 ns were 23 top binding, 6 bottom
binding, and 4 side binding.

3.4.1 Clustering. Clustering analysis was performed as discussed in the methods
section in order to identify three major binding modes (top stacking, groove binding, and
bottom stacking). The first cluster, the most abundant, is a top binding pose that consists
of 55.9% of the simulation. DBDI1, resting above the first G-tetrad layer (G4, G8, G13,
G17), exhibits intercalation at the 5’-end of the G-quadruplex. The second cluster is a
side binding pose that consists of 15.6% of the simulation and only exhibits minor
intercalation between A21 and G23. The third cluster, consisting of 12.1% of the
simulation, is a bottom binding pose. Altogether, they encompassed 83.6% of all the

trajectories. The remainder of the simulation consisted of the unbound state.

38

www.manaraa.com

Side View Top View

Top
(55.9%)

Side
(15.6%)

Bottom
(12.1%)

Figure 10. Clustering results. Representative structure of populated bound clusters from
the k-means clustering analysis. The three G-tetrad layers in the G-quadruplex are in red,
green, and light blue for the top, middle and bottom layers, respectively. The ligand
(DBD1) is in orange and K* cations are represented by yellow balls. The unbound cluster
was not shown (16.4%).

3.4.2 MM-PBSA. MM-PBSA binding energy calculations were conducted for the
three ligand binding modes in order to determine the relative stability of the three major
binding modes. The binding energy calculations indicated that the most energetically
favorable binding pose was the top binding mode (-42.9 + 4.5 kcal/mol) followed by both
the bottom (-16.9 + 1.8 kcal/mol) and side (-16.9 = 2.6 kcal/mol) binding modes which
had similar binding energies. van der Waals forces play a major role in the stability of the

binding of DBD1 to Pu24 as can be seen when comparing the van der Waals forces of the
39

www.manharaa.com

top binding mode (-52.0 £ 0.3 kcal/mol) to that of the bottom (-14.7 &+ 1.0 kcal/mol) or
side (-14.3 £ 0.5 kcal/mol) binding modes. The change in binding energy (AAETor)
between the top binding mode and the other two binding modes is less than the difference
in van der Waals energy, indicating that the van der Waals interactions make up the
majority of the total MM-PBSA binding energy for all three binding poses. We see that
the difference in PBTOT, PB solvation and gas phase energy, also plays a lesser but non-
negligible role in the difference between the binding energies of top (-25.9 + 0.4

kcal/mol), bottom (-4.5 + 0.8 kcal/mol), and side (-4.5 £ 0.5 kcal/mol) binding modes.

Table 1
MM-PBSA binding energies.

Binding energies (kcal/mol) of DBDI1 in the Top, Bottom, and Side binding modes.
Position AEvpw? AESURb AEpBELES AEPBTOTd AConf* AET()Tf AAEror®

Top -52.0+0.3 20.3+0.3 5.9+0.4 259404 -16.9+4.6 -42.9+45 0
Bottom -14.7£1.0 8.3+1.2 1.941.0 -4540.8 -12.4+19 -16.9+1.8 26.0
Side -14.3£0.5 8.4+1.9 1.4£0.2 45405 -124+2.7 -16.9+2.6 26.0

2 Gas phase van der Waals energy (VDW)

®Nonpolar solvation (SUR=PBSUR+PBDIS)

¢ Solvation and gas phase electrostatic energy (PBELE=PBCAL + ELE)
4 PB Solvation and gas phase energy (PBTOT=VDW-+SUR+PBELE)

¢ Conformation energy change upon complex formation (Conf)

fTotal binding energy in water (PBTOT + Conf)

¢ Relative binding energy

3.4.3 MSM results. The clustering identified four macrostates (unbound, top,
side, and bottom binding) and MSM analysis was performed on those states using

transition path theory as mentioned in the methods section to obtain binding pathway
40

www.manaraa.com

information. Identification and verification of the optimal lagtime were performed using
the implied timescales and Chapman-Kolmogorov test as discussed in the methods
section (Figures 6-7). A network model with the optimal lagtime (250 ns) was presented
with the transition counts (Figure 8): the approximate ratios of the interstate fluxes were
1:3 for unbound to top binding, 4:3 for unbound to side binding, 1:1 for unbound to
bottom binding, 1:3 for side binding to top binding, and 1:2 for bottom binding to side
binding. To simplify interpretation, the mean first passage time between each of the two
connected states, connections being defined as any two states that had at least 1
transition, was calculated. The transitioning of the other states towards the top binding
mode, the most thermodynamically stable state, was analyzed and presented in a
reorganized MSM of DBD1 binding to the Pu24 G-quadruplex (Figure 11). Figure 11
shows organization of the states from top to bottom begins with unbound on top and then
from least abundant to most abundant (abundance is displayed in parentheses). Overall
transition times for each given path are organized from fastest (left) to slowest (right). It
can be clearly seen that the transition from the unbound state directly to the final binding
pose is the fastest while transitions involving transition states are significantly slower.
Transition to the bottom transition pose requires transition to the side transition pose in
order to reach the final binding pose. Interestingly, three distinct binding pathways to the
most stable binding mode (top binding) were obtained. The first major binding pathway
was the direct transition from unbound to the final top binding state. The second and third
binding pathways involve additional transitions through the side binding transition state
and both the bottom binding transition state and the side binding transition state

respectively. We can see from our results that the ligand has multiple pathways, some

41

www.manaraa.com

more favored than others, to reach the final binding pose and these pathways are

observable in the original trajectories, further supporting our results.

4‘*f m — Q
(N A JL:-L‘ . b
‘;' a'.—-':j'-‘ \ ﬁ w3 .
el'_-.‘... e _,_&
38+ l4ps 1.3+£0.7 ps
20£1.0 ps 1.6 09 ps o
.-.)'&ilm
22+09ps ‘:%
o, 2
SN o, 121%)
2.820.7 us S Lo
1.6+0.2ps "

(156%

)
1.6 0.1 p:,J r 3207 ps
;"‘\-'
~_C

(55.9%)

Figure 11. MSM of DBD1/Pu24 complex. The top row consists of representative
structures of the unbound state. The middle row consists of the two intermediate states,
side and bottom. The bottom row consists of DBD1 binding to the top site of the G-
quadruplex. The mean first passage times between the four states (unbound, bottom, side,
and top) are annotated in the same color as the arrow directing the transition. DBD1 and
the Pu24TT G-quadruplex are colored black and blue/cyan respectively.

3.4.4 Simulation results. The 33 simulated trajectories can be further classified

into different binding pathways. First, there are 16 trajectories that exhibit the transition

shown from unbound directly to the top binding state (Appendix G). Second, nine

42

www.manharaa.com

trajectories show the ligand going from the unbound state to the side transition state to
the final top binding state (Appendix G). Third, three trajectories indicate a transition
from either top or bottom to the side binding state (Appendix G). Fourth, there are two
trajectories that indicate the transition from unbound to bottom, which combined with the
aforementioned transitions shows the possibility of an unbound to bottom to side to top
transition if the trajectories were to be extended (Appendix G). Fifth, some of the reverse
pathways can be observed such as 3 trajectories exhibiting the transition from side back
to bottom binding (Appendix G). Clearly, these observed pathways support our MSM
(Figure 11).

A representative trajectory for the first three pathways was chosen for further
characterization using some order parameters (Figures 12-14). We measured hydrogen
bonds, center-to-center distance (D), drug-base dihedral angle, receptor and ligand
RMSD and MM-PBSA binding energy (AE). The top stacking mode was the most
energetically favorable and stable structure according to the RMSD and MM-PBSA

binding energy.

43

www.manaraa.com

12 ‘M‘ =-| I .*l ' .;l. . . L nu."..
nwwﬂu 1 "ﬂ‘|'Wl"ﬂ‘|‘ll'}'h*‘v|ﬂ‘*i M wuw A I 'un" NM'

H-Bond

9
|'

AE(kcal/mol)

0 100 200 300 400 500 600 700 800 900 1000
Time (ns)

Figure 12. Order parameters of top binding representative trajectory. Results are
calculated from a representative trajectory of the primary binding pathway of DBDI to
the top position of the G-quadruplex. Top-bottom: Representative structures with time
annotation. 5> and 3’ are indicated by a red and blue ball, respectively. K* ions are
represented in yellow. Hydrogen bonds in the first (red), second (green), third (blue) G-
tetrad and fourth (black) of G-triad layer of quadruplex (H-bond), drug-base dihedral
angle, ligand RMSD, center-to-center distance (R/black) and K*-K" distance (R/red) and

MM-PBSA binding energy (AE).

44

www.manharaa.com

Figure 12 shows unbound DBD nearly reaching the top binding position at 138 ns
and transitioning fully into this position by 652 ns. Hydrogen bonding remains relatively
stable throughout the simulation with about 10, 9, 6, and 3 hydrogen bonds in the first,
second, third G-tetrad, and fourth triad layers of the G-quadruplex, respectively,
suggesting little change in the G-quadruplex scaffold. The drug-base dihedral begins at
~80 degrees, decreases to ~40 degrees at 200 ns, and stabilizes at 20 degrees at 650 ns
and throughout the remaining simulation. This highlights DBD1’s intercalation between
the top G-tetrad layer and the 5’-end loop. The DBD1 ligand RMSD stabilizes at ~20 A
by 150 ns and remains stable throughout the simulation. Center-to-center potassium ion
distancing between the ligand and the G-quadruplex stabilizes by 100 ns and the
potassium ions distances remains stable throughout the simulation. MM-PBSA binding
energy stabilizes at approximately -25 kcal/mol by 650 ns after DBD1 reaches the top

binding site.

45

www.manaraa.com

503ns

Dﬂns

B

i

i ﬁ
uwi. m mw,ml t«mu@h@!w“ W"‘“‘ w'nl Iy H‘ mem"MM m*n i M

H-Bond

- =]
(=] (=]
l

D{a.Au! Angle(®)

RMS
-
0o

T

d

IS R T | S e TS e I) | S St S O e, WA R ES

AE{kcal/mol)

0 100 200 300 400 500 600 700 800 800 1000
Time (ns)

Figure 13. Order parameters of side to top representative trajectory. Results are
calculated from a representative trajectory of the primary binding pathway of DBDI1 to
the top position of the G-quadruplex. Top-bottom: Representative structures with time
annotation. 5’ and 3’ are indicated by a red and blue ball, respectively. K* ions are
represented in yellow. Hydrogen bonds in the first (red), second (green), third (blue) and
last (black) of G-tetrad layer of quadruplex (H-bond), drug-base dihedral angle, ligand
RMSD, center-to-center distance (R/black) and K*-K* distance (R/red) and MM-PBSA
binding energy (AE).

46

www.manharaa.com

Figure 13 shows unbound DBD1 that transitions to the side-binding site by 303 ns
and to another side-binding site at 503 ns before transitioning to the top-binding position
at 725 ns. The hydrogen binding analysis here shows little change in the G-quadruplex
scaffold, as in Figure 12. The dihedral angle initially averages 80 degrees, decreases to
~20 degrees at 300ns, increases again to ~80 degrees between 300 ns and 650 ns and
stabilizes at 10 degrees at 650 ns and throughout the remaining simulation. The DBD1
RMSD begins at 15 A, increases sharply to ~30 A at 100 ns, decreases slowly until 500
ns before spiking to ~30 A again and then stabilizes with less fluctuation at 650 ns until
the end of the simulation. Center-to-center distance stabilizes by 650 ns, while the
distance between the two K ions remains stable for the entire simulation. MM-PBSA
energy stabilizes at approximately -25 kcal/mol by 650 ns when the ligand has reached

the stable top binding position.

47

www.manaraa.com

aséns 800ns " 1001ns

ki

il ‘th*“ll 1|L|| ||(,wﬂ\mfw j |1|.- W M\p

£ [--]
(=] (=]
T

S
[P 1]
owmo o

RMSD(A) Angle(°)

R

=
=
I

=

=
=

AE(kcal/mol)

1 1 1 1 | 1
200 300 400 500 600 700 800 900 1000
Time (ns)

g

Figure 14. Order parameters of bottom to side representative trajectory. Results are
calculated from a representative trajectory of the primary binding pathway of DBDI to
the top position of the G-quadruplex. Top-bottom: Representative structures with time
annotation. 5> and 3’ are indicated by a red and blue ball, respectively. K* ions are
represented in yellow. Hydrogen bonds in the first (red), second (green), third (blue) and
last (black) of G-tetrad layer of quadruplex (H-bond), drug-base dihedral angle, ligand
RMSD, center-to-center distance (R/black) and K'-K" distance (R/red) and MM-PBSA
binding energy (AE).

Figure 14 shows unbound DBD1 before it reaches the bottom-binding position at

191 ns and transitioning to the side-binding position at 800 ns. The hydrogen binding

48

www.manharaa.com

analysis here shows little change in the G-quadruplex scaffold, as seen in Figures 12 and
13. The dihedral angle initially averages ~30 degrees, increasing and stabilizing to ~70
degrees at 450 ns throughout the remaining simulation. The DBD1 RMSD starts at 15 A
before increasing sharply to 30 A at 450 ns and stabilizes for the remaining simulation.
Center-to-center distance is stable throughout the entire simulation except for a small
fluctuation at ~450 ns, while the distance between the two potassium ions remains stable
throughout the simulation. MM-PBSA energy fluctuates between 0 kcal/mol and -10
kcal/mol for the entire simulation.

Trends in Figures 12-14 showed a lack of change in H-bonding within the G-
quadruplex structure scaffolding; the G-quadruplex structure conformations were not
significantly altered by ligand-binding. The center-to-center potassium ion distancing in
the G-quadruplexes stays relatively stable in all three simulations, suggesting that the
core structures do not undergo significant conformational change. The nucleotide
sequence (T!°G!''A'?) underwent noticeable conformational changes in all three systems,
where base flipping was apparent in the (T!°G!'A'?) sequence. The top-binding position
in all three trajectories has a lower dihedral angle and binding energy after DBD1
intercalates between the 5’-loop and the top G-tetrad layer; this suggests that DBD1 has
geometric-favorability within the top-binding site, resting just above the first G-tetrad
layer. The top binding position exhibits planarity with the G-quadruplex scaffold, which
is not seen in either the bottom- or side-binding positions. This planarity allows DBD1 to
intercalate here, serving an important factor in determining the most stable binding

position. Our findings suggest that the most favorable binding position is top-stacking

49

www.manaraa.com

while the intermediate positions, side and bottom ultimately transition to the top-binding
position of the G-quadruplex.
The pathway from the unbound state directly to the final (top) binding state is indicative
of the induced fit theory while the other two pathways that selectively bind to the side or
the bottom pockets suggest that the system follows the conformational selection theory.
We can see from the observed transitions that the number of transitions for both the
induced fit and conformational selection pathways are relatively similar in abundance,
thus we propose that the binding of DBD1 to 2MGN is a mixture of the two binding
theories.
3.5 Discussion

Our clustering and MM-PBSA analyses suggest that the most favorable binding
state is top stacking while the intermediate states, side and bottom, shift towards the top
binding position of the G-quadruplex. This coincides with several other studies that show
the top binding mode being the most energetically favorable for certain G-quadruplex
systems (Machireddy, Sullivan, & Wu, 2019; Shen, Mulholland, Zheng, & Wu, 2017).
The lesser energetic favorability exhibited by the side and bottom binding poses suggests
that they are intermediate states. The side binding pose is not experimentally observed in
either the 2MGN or SW77 structure but has been observed in duplex structures
(Machireddy et al., 2019). Major contributors to the binding energy were van der Waals
forces, which had -52.0 £ 0.3 kcal/mol for the top binding mode, -14.7 = 1.0 kcal/mol for
the bottom binding mode, and -14.3 £ 0.5 kcal/mol for the side binding mode, and
PBTOT, which had -25.9 + 0.4 kcal/mol for the top binding mode, -4.5 + 0.8 kcal/mol for
the bottom binding mode, and -4.5 + 0.5 kcal/mol for the side binding mode. Overall

50

www.manaraa.com

binding energies of the representative trajectories also showed that the top binding pose
was the most stable as the two trajectories that ended in the top binding pose exhibited
MM-PBSA values of -25 kcal/mol in comparison to the bottom or side binding MM-
PBSA values of -10 kcal/mol. Additionally, intercalation at the 5’-end of the G-
quadruplex structure was observed for the top binding pose. Thus, we propose that the
ability for the ligand to bind in a planar orientation relative to the G-quadruplex is more
energetically favorable thus making the top binding mode the most favorable.

Our coarse-grained MSM procedure, used in our previous work(Mulholland et al.,
2020), clusters into a handful of “macrostates” directly and skips over the experimentally
unverifiable thousand “microstates”. The expected convergence time of the implied
timescales should be significantly greater than that of a model with a greater number of
clusters. This results in a coarser grained model that trades finer detail for greater
experimental testability and easier human understanding (Pande et al., 2010). It is likely
that directly clustering into “macrostates” still maintains the integrity of the MSM as
verification through the Chapman-Kolmogorov test (Figure 7) indicates that the model
closely resembles the observed simulation data.

The interstate fluxes (Figure 8) indicate that the favored transition pathway is
from unbound to top binding, though the pathways from unbound to side binding to top
binding and unbound to bottom binding to side binding to top binding play a lesser but
non-negligible role. This is supported by the mean-first passage time calculations which
indicate that the unbound directly to top binding pathway is the fastest (1.6 + 0.2 ps)
while the other two pathways are several microseconds slower. The pathway from the
unbound state directly to the final (top) binding state is indicative of the induced fit

51

www.manaraa.com

theory while the other two pathways that selectively bind to the side or the bottom
pockets suggest that the system follows the conformational selection theory. We can see
from the observed transitions (Figure 8) that the number of transitions for both the
induced fit and conformational selection pathways are relatively similar in abundance,
thus we propose that the binding of DBD1 to 2MGN is a mixture of the two binding
theories.
3.6 Other Studies

The coarse-grained MSM analysis was performed on 40 simulation trajectories of
the TMPyP4-G4C2 RNA G-quadruplex system (Mulholland et al., 2020). To decipher
the kinetics pathways, a coarse-grained MSM was constructed from the 40 binding
trajectories in a similar fashion as described previously in this thesis. Consistent with the
thermodynamics analysis, there were three observed kinetic binding states: top, bottom,
and side (groove). Parallel binding pathways toward stable top and bottom binding states
were observed for the TMPyP4-RNA G-quadruplex complex system (Figure 15). We can
observe that the transition from unbound directly to the bottom/top binding state is
slightly faster than the parallel pathway that involves the side transition state. The
transition time of unbound to bottom is the fastest of any pathway leading to a final
binding state, while the transition time of unbound to top is only slightly slower.
Transitioning from unbound to the transition state and then to a final binding state is
approximately two-fold the time that it takes for a direct transition from unbound to a
final binding state. The bottom and top binding poses are the final binding states which
collectively make up approximately 75% of the simulation. The approximate interstate

flux for unbound to bottom binding was 2:1, unbound to side binding was 1:1, unbound

52

www.manaraa.com

to top binding was 3:1, side binding to top binding or bottom binding were both

unidirectional.

=

Unbound State

2520.2 ps L?
2.1%0.1ps 1.5£0.1pus
Transition State
(9.8%)
-l e
Final States
(75.0%)

(28.9%) (46.1%)

Figure 15. TMPyP4-RNA MSM. The mean first passage times between the four states
(unbound, side transition, top, and bottom) of the TMPyP4-RNA G-quadruplex complex
system.

In another study, four coarse-grained MSM analyses were performed in a similar
method to what has been previously described on the ligand CX-5461 in complex with
the MYC G-quadruplex, the c-KIT1 G-quadruplex, and human telomeric DNA, and
duplex DNA (Sullivan et al., 2020). The MSM revealed multiple parallel pathways
toward the most thermodynamically stable states (end stacking) in the human telomeric
G4 system. For the human telomeric system, there were four major parallel pathways

were observed for CX-5461: unbound to top binding, unbound to bottom binding, and

53

www.manharaa.com

unbound to side binding as an intermediate state before transitioning to either a top or
bottom binding pose. The mean first passage times between the four states are shown in
Figure 16 where green arrows indicate the more likely transition while blue arrows
indicate a less likely transition. The top (37.8%) and bottom (20.8%) binding poses are
the most thermodynamically favorable binding states and collectively make up
approximately 58.5% of the simulation. Our calculated first mean passage times indicated
that the pathway from unbound directly to the top binding state is slightly faster (3.3 ps)
than unbound directly to the bottom binding state (4 us) and both the transition states
starts unbound and going from the side to top (1.2 us + 3.1 us =4.3 ps) and side to
bottom (1.2 us + 5.7 us = 6.9 us) transition states. The approximate interstate flux for
unbound to top binding was 1:15, unbound to side binding was 3:5, unbound to bottom
binding was 2:3, side binding to top binding was unidirectional from side binding to top

binding, and side binding to bottom binding was 20:1.

54

www.manaraa.com

&
@]

Unbound State = P
(4.6%) & .
1.2+0.1 us1
3.8+0.8 us
3.3%+0.3ps
. 5.1+0.8 pus 4+0.5ps e
Intermediate State o 9+0.8us
(36.9%) _6: -)
31 t%y DAL

’%0-1 us
~ 4’1 us 7 im \\,/(
Final States &9 - Cf =4 ¢
(585%) ™ ’
o«
(37.8%) (20.8%)

Figure 16. CX-5/human telomeric DNA MSM. The mean first passage times between the
four states (unbound, side transition, top, and bottom) of the human telomeric DNA G-
quadruplex and CX-5461 complex system.

The next MSM revealed multiple parallel pathways toward the most
thermodynamically favorable top binding mode in the c-KIT1 system. The c-KIT1 G4
system shows three major parallel pathways leading to one thermodynamically favorable
top binding state: unbound to top binding, and unbound to side binding as an intermediate
state before transitioning to a top binding pose, and unbound to bottom binding before
transitioning to a side binding pose and finally transitioning to a top binding pose. The
mean first passage times between the three states are shown in Figure 17 where green
arrows indicate the more likely transition while blue arrows indicate a less likely
transition. Each of the pathways led to a thermodynamically favorable top binding state
which accounted for 53.5 % of the simulation period and occurred in 1.2 ps. The
unbound to side to top pathway was the next fastest totaling 2.7 us. The slowest pathway

was from the unbound state to the side and finally ending in a top binding mode which

55

www.manaraa.com

totaled 6.8 us. Important to note is that we believe the MSM determined that the bottom
binding mode is not a thermodynamically favorable state in this system because of the
limited simulation period, however we expect that if the simulations were extended
further, a thermodynamically favorable bottom binding site would be seen. The
approximate interstate flux for unbound to top binding was 3:4, unbound to side binding
was 3:4, unbound to bottom binding was 1:10, side binding to top binding was 1:30, and

side binding to bottom binding was 1:50, and top binding to bottom binding was 1:4.

56

www.manharaa.com

(6.8%)

16+02pus]13.0+06pus 3.4%0.7ps|]2.2+0.5ps

. 2.3 £10.2ijis Lv
Intermediate States > A
(39.7%) P
49+0.8 us
3.7+0.5ps

(24.0%)

(15.7%)
1.1+00 usJ [2.2 +0.1ps

1.2:+0:1 jis

Final State
(53.5%)

Figure 17. CX-5/c-KIT1 MSM. The mean first passage times between the four states
(unbound, side transition, top, and bottom) of the c-KIT1 DNA G-quadruplex and CX-
5461 complex system.

The next MSM revealed multiple parallel pathways toward the most
thermodynamically stable top binding mode in the MYC system, whereas the bottom
stacking mode appears to be an off-pathway intermediate. For the 2MGN system, three
major parallel pathways were observed: unbound to top, unbound to bottom, and
unbound to side transition and ending in a top binding mode. Unique to this system, the
bottom binding pose appears to be highly unstable and likely acts as an off pathway
intermediate state where CX-5461 binds to the bottom from an unbound state and once
again goes back to the unbound state and follows one of the other pathways leading to the

thermodynamically favorable top binding mode. The mean first passage times between

57

www.manharaa.com

these are shown in Figure 18 where green arrows indicate the more likely transition while
blue arrows indicate a less likely transition. The top (59.6%) and bottom (9.5%) binding
poses collectively make up approximately 69% of the simulation. The transition from
unbound directly to the top binding state (1.4 us) is slightly faster than from unbound to
the top binding state through the side transition state (2.4 us). Transition from the
unbound to the bottom binding pose is significantly slower calculated to be 16.7 us. The
approximate interstate flux for unbound to top binding was 1:5, unbound to side binding

was 1:1, unbound to bottom binding was 1:4, and side binding to top binding was 1:3.

58

www.manharaa.com

e | 2 \
~ .-‘\" U ’((ﬁ =
wy il @ a,
LR o - Lo
Q —e 7} ,
Unbound State

(43%) '
1.0+ 0.3 ps 16.7 £ 4.5 s
8 oud § *23+.7
A+l
1.4+0.2 s Hs

*39+1.2pus

Intermediate State

(26.7%)
; A:us

Final State
(69.0%)

(59.6 %)

Figure 18. CX-5/MYC MSM. The mean first passage times between the four states
(unbound, side transition, top, and bottom) of the MYC DNA G-quadruplex and CX-
5461 complex system. Starred (*) transition times indicate mean first passage times that
were calculated with relatively minimal transition data and may prove less reliable.

The MSM revealed multiple parallel pathways toward the most
thermodynamically stable groove binding mode in the duplex system. The MSM plot of
the duplex system and mean first passage times are presented in Figure 19 where green
arrows indicate the more likely transition while blue arrows indicate a less likely
transition. This plot shows the major pathways for the duplex system include one
thermodynamically favorable groove biding state (25.7%) as well top and bottom states
that end up in a groove binding mode. Since the groove binding mode is the only one of
physiological relevance for long chromosomal DNA, pathways leading to this mode are

discussed here. The pathway from unbound directly to the groove binding state is slightly

59

www.manaraa.com

faster (2.0 ps) than from unbound to the transition states (top: 4.7 us or bottom: 5.0 pus)

leading to the groove binding and is significantly more abundant.

(4.5%)

(25.7%)

Figure 19. CX-5/DNA duplex MSM. The mean first passage times between the four
states (unbound, groove binding, and top and bottom terminal binding) of the DNA
duplex and CX-5461 complex system.

60

www.manharaa.com

Chapter 4
Conclusion and Future Directions
4.1 Conclusion
The coarse-grained MSM analysis is a powerful tool that maintains the
Markovian property of a traditional MSM while maintaining experimentally verifiable
clusters. Traditional MSM analyses cluster into thousands of experimentally unverifiable
“microstates” and are typically used for processes such as protein folding. In my
experience, many common implementations such as MSMBuilder or PyEmma provide
less than stellar results when attempting to create an MSM for ligand-receptor binding
systems. However, the coarse-grained MSM analysis solves the issue of the
experimentally unverifiable clusters and is designed specifically to work with ligand-
receptor binding systems while still maintaining applicability to other biological
processes. It builds upon the high resolution spatial and temporal information provided
by MD simulations and enables the user to obtain invaluable kinetic information as well
as binding mechanism information. The coarse-grained MSM analysis was built to be
used with minimal technical knowledge and is applicable to a wide variety of systems.
We have used the coarse-grained MSM analysis in several studies and expect that it can
be applied to many more (Chen et al., 2020; Mulholland et al., 2020; Sullivan et al.,
2020).
4.2 Future Directions
There are several improvements that I have considered for the future of the
coarse-grained MSM analysis. First, the code is primarily performed through the R

graphical interface, but a custom designed user interface would make the software even

61

www.manaraa.com

more accessible to users with minimal technical knowledge. Currently, some of the more
complex portions of the code require the user to follow fairly complex instructions that
could be minimized through the use of a custom graphical interface. Second, portions of
the code are currently run through VMD which requires the user to know at least VMD
technical knowledge in order to proceed. It is definitely possible to create a method that
would bypass the VMD usage, but development of such a method would be fairly
complex. In theory, a custom graphical interface could be designed such that the user
could simply click on the structures to designate the ligand-receptor system. Third, there
are definitely optimization improvements that can be performed on the code itself to
decrease the run time or hardware requirements. The current software is already
reasonably fast, but further improvements are definitely possible. Last, this coarse-
grained MSM analysis was originally designed for analyzing ligand-receptor binding.
While this analysis can be applied to other biological processes such as protein folding, I
have observed that the data obtained is slightly less ideal as compared to that of our
ligand-receptor binding analyses. Additionally, our analyses were typically of simulations
that consisted of less than 100,000 frames in total and could be performed in a few hours
on a non-specialized computer. When increasing the number of frames by various orders
of magnitude, the run time of the analysis also increased by even greater orders of
magnitude. Further increasing the robustness of the code could improve the range of

application of the coarse-grained MSM analysis.

62

www.manaraa.com

References

Agarwal, T., Lalwani, M. K., Kumar, S., Roy, S., Chakraborty, T. K., Sivasubbu, S., &
Maiti, S. (2011). Morphological Effects of G-Quadruplex Stabilization Using a
Small Molecule in Zebrafish. Biochemistry, 53(7), 1117-1124.
doi:10.1021/bi4009352

Agrawal, P., Hatzakis, E., Guo, K., Carver, M., & Yang, D. (2013). Solution structure of
the major G-quadruplex formed in the human VEGF promoter in K+: insights
into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res, 41(22),
10584-10592. doi:10.1093/nar/gkt784

Ambrus, A., Chen, D., Dai, J., Jones, R. A., & Yang, D. (2005). Solution Structure of the
Biologically Relevant G-Quadruplex Element in the Human c-MYC Promoter.
Implications for G-Quadruplex Stabilization. Biochemistry, 44(6), 2048-2058.
doi:10.1021/b1048242p

Barr, L. F., Campbell, S. E., Diette, G. B., Gabrielson, E. W., Kim, S., Shim, H., & Dang,
C. V. (2000). c-Myc Suppresses the Tumorigenicity of Lung Cancer Cells and
Down-Regulates Vascular Endothelial Growth Factor Expression. Cancer
Research, 60(1), 143.

Bhat, J., Mondal, S., Sengupta, P., & Chatterjee, S. (2017). In Silico Screening and
Binding Characterization of Small Molecules toward a G-Quadruplex Structure
Formed in the Promoter Region of c-MYC Oncogene. ACS Omega, 2(8), 4382-
4397. doi:10.1021/acsomega.6b0053 1

Boddupally, P. V. L., Hahn, S., Beman, C., De, B., Brooks, T. A., Gokhale, V., & Hurley,
L. H. (2012). Anticancer Activity and Cellular Repression of c-MYC by the G-
Quadruplex-Stabilizing 11-Piperazinylquindoline Is Not Dependent on Direct
Targeting of the G-Quadruplex in the c-MYC Promoter. J Med Chem, 55(13),
6076-6086. doi:10.1021/jm300282c

Buket, O., Clement, L., & DanZhou, Y. (2014). DNA G-quadruplex and its potential as
anticancer drug target. Sci China Chem, 57(12), 1605-1614. doi:10.1007/s11426-
014-5235-3

Changeux, J.-P., & Edelstein, S. (2011). Conformational selection or induced fit? 50
years of debate resolved. F'1000 biology reports, 3, 19-19. doi:10.3410/B3-19

Che, T., Wang, Y. Q., Huang, Z. L., Tan, J. H., Huang, Z. S., & Chen, S. B. (2018).
Natural Alkaloids and Heterocycles as G-Quadruplex Ligands and Potential
Anticancer Agents. Molecules, 23(2). doi:10.3390/molecules23020493

63

www.manaraa.com

Chen, B., Fountain, G., Sullivan, H.-J., Paradis, N., & Wu, C. (2020). To probe the
binding pathway of a disubstituted benzofuran compound (D089-0563) to c-MYC
Pu24 G-quadruplex using free ligand binding simulations and Markov state
model analysis. Manuscript in preparation.

Chung, W. J., Heddi, B., Hamon, F., Teulade-Fichou, M. P., & Phan, A. T. (2014).
Solution Structure of a G-quadruplex Bound to the Bisquinolinium Compound
Phen-DC3. Angewandte Chemie-International Edition, 53(4), 999-1002.
doi:10.1002/anie.201308063

Cooney, M., Czernuszewicz, G., Postel, E. H., Flint, S. J., & Hogan, M. E. (1988). Site-
specific oligonucleotide binding represses transcription of the human c-myc gene
in vitro. Science, 241(4864), 456. doi:10.1126/science.3293213

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network
research. InterJournal, Complex Systems, 1695(5), 1--9.

Dai, J., Carver, M., Hurley, L. H., & Yang, D. (2011). Solution Structure of a 2:1
Quindoline—c-MYC G-Quadruplex: Insights into G-Quadruplex-Interactive Small
Molecule Drug Design. Journal of the American Chemical Society, 133(44),
17673-17680. doi:10.1021/ja205646q

Davis, J. T. (2004). G-Quartets 40 Years Later: From 5-GMP to Molecular Biology and
Supramolecular Chemistry. Angewandte Chemie International Edition, 43(6),
668-698. doi:10.1002/anie.200300589

Davis, T. L., Firulli, A. B., & Kinniburgh, A. J. (1989). Ribonucleoprotein and protein
factors bind to an H-DNA-forming c-myc DNA element: possible regulators of
the c-myc gene. Proceedings of the National Academy of Sciences of the United
States of America, 86(24), 9682-9686. doi:10.1073/pnas.86.24.9682

Deng, N., Wickstrom, L., Cieplak, P., Lin, C., & Yang, D. (2017). Resolving the Ligand-
Binding Specificity in c-MYC G-Quadruplex DNA: Absolute Binding Free
Energy Calculations and SPR Experiment. The journal of physical chemistry. B,
121(46), 10484-10497. doi:10.1021/acs.jpcb.7b09406

Dill, K. A., Ozkan, S. B., Shell, M. S., & Weikl, T. R. (2008). The protein folding
problem. Annual review of biophysics, 37,289-316.
doi:10.1146/annurev.biophys.37.092707.153558

Felsenstein, K. M., Saunders, L. B., Simmons, J. K., Leon, E., Calabrese, D. R., Zhang,
S., ... Schneekloth, J. S. (2011). Small Molecule Microarrays Enable the
Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression.
ACS Chemical Biology, 11(1), 139-148. doi:10.1021/acschembio.5b00577

64

www.manaraa.com

Harikrishna, S., Kotaru, S., & Pradeepkumar, P. I. (2017). Ligand-induced
conformational preorganization of loops of c-MYC G-quadruplex DNA and its

implications in structure-specific drug design. Molecular Biosystems, 13(8), 1458-
1468. doi:10.1039/c7mb00175d

Hawksworth, D., Ravindranath, L., Chen, Y., Furusato, B., Sesterhenn, I. A., McLeod, D.
G., ... Petrovics, G. (2010). Overexpression of C-MYC oncogene in prostate
cancer predicts biochemical recurrence. Prostate Cancer And Prostatic Diseases,
13,311. doi:10.1038/pcan.2010.31

Hsu, S.-T. D., Varnai, P., Bugaut, A., Reszka, A. P., Neidle, S., & Balasubramanian, S.
(2009). A G-Rich Sequence within the c-kit Oncogene Promoter Forms a Parallel

G-Quadruplex Having Asymmetric G-Tetrad Dynamics. Journal of the American
Chemical Society, 131(37), 13399-13409. doi:10.1021/ja904007p

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics.
Journal of Molecular Graphics & Modelling, 14(1), 33-38. d0i:10.1016/0263-
7855(96)00018-5

J Wu, H. (1996). The expression of c-myc protein in uterine cervical cancer: A possible
prognostic indicator. Nihon Sanka Fujinka Gakkai zasshi, 48, 515-521.

Joung, I. S., & Cheatham, T. E., 3rd. (2008). Determination of alkali and halide
monovalent ion parameters for use in explicitly solvated biomolecular
simulations. The journal of physical chemistry. B, 112(30), 9020-9041.
doi:10.1021/jp8001614

Kang, H.-J., & Park, H.-J. (2009). Novel Molecular Mechanism for Actinomycin D
Activity as an Oncogenic Promoter G-Quadruplex Binder. Biochemistry, 48(31),
7392-7398. do0i:10.1021/b19006836

Kim, B. G., Evans, H. M., Dubins, D. N., & Chalikian, T. V. (2011). Effects of Salt on
the Stability of a G-Quadruplex from the Human ¢c-MY C Promoter. Biochemistry,
54(22), 3420-3430. doi:10.1021/acs.biochem.5b00097

Ma, D. L., Chan, D. S., Fu, W. C., He, H. Z., Yang, H., Yan, S. C., & Leung, C. H.
(2012). Discovery of a natural product-like c-myc G-quadruplex DNA groove-
binder by molecular docking. PLoS One, 7(8), e43278.
doi:10.1371/journal.pone.0043278

Machireddy, B., Sullivan, H.-J., & Wu, C. (2019). Binding of BRACO19 to a Telomeric
G-Quadruplex DNA Probed by All-Atom Molecular Dynamics Simulations with
Explicit Solvent. Molecules (Basel, Switzerland), 24(6), 1010.
doi:10.3390/molecules24061010

65

www.manaraa.com

Magrath, 1. (1990). The Pathogenesis of Burkitt's Lymphoma. In G. F. Vande Woude &
G. Klein (Eds.), Advances in Cancer Research (Vol. 55, pp. 133-270): Academic
Press.

Mathad, R. 1., Hatzakis, E., Dai, J., & Yang, D. (2011). c-MYC promoter G-quadruplex
formed at the 5'-end of NHE III1 element: insights into biological relevance and
parallel-stranded G-quadruplex stability. Nucleic Acids Res, 39(20), 9023-9033.
doi:10.1093/nar/gkr612

McGibbon, Robert T., Beauchamp, Kyle A., Harrigan, Matthew P., Klein, C., Swails,
Jason M., Hernandez, Carlos X., . . . Pande, Vijay S. (2015). MDTraj: A Modern
Open Library for the Analysis of Molecular Dynamics Trajectories. Biophysical
Journal, 109(8), 1528-1532. doi:https://doi.org/10.1016/j.bpj.2015.08.015

Mulholland, K., Sullivan, H.-J., Garner, J., Cai, J., Chen, B., & Wu, C. (2020). Three-
Dimensional Structure of RNA Monomeric G-Quadruplex Containing ALS and
FTD Related G4C2 Repeat and Its Binding with TMPyP4 Probed by Homology
Modeling based on Experimental Constraints and Molecular Dynamics
Simulations. ACS chemical neuroscience., 11(1), 57-75.
doi:10.1021/acschemneuro.9b00572

Neidle, S. (2016). Quadruplex Nucleic Acids as Novel Therapeutic Targets. J Med Chem,
59(13), 5987-6011. doi:10.1021/acs.jmedchem.5b01835

Noé¢, F., Horenko, 1., Schiitte, C., & Smith, J. C. (2007). Hierarchical analysis of
conformational dynamics in biomolecules: Transition networks of metastable
states. The Journal of Chemical Physics, 126(15), 155102. doi:10.1063/1.2714539

Pande, V. S., Beauchamp, K., & Bowman, G. R. (2010). Everything you wanted to know
about Markov State Models but were afraid to ask. Methods, 52(1), 99-105.
doi:10.1016/j.ymeth.2010.06.002

Pany, S. P., Bommisetti, P., Diveshkumar, K. V., & Pradeepkumar, P. L. (2016).
Benzothiazole hydrazones of furylbenzamides preferentially stabilize c-MYC and
c-KIT1 promoter G-quadruplex DNAs. Org Biomol Chem, 14(24), 5779-5793.
doi:10.1039/c60b00138f

Pedregosa, F., Ga, #235, Varoquaux, 1., Gramfort, A., Michel, V., . . . Duchesnay, d.
(2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12, 2825-
2830.

Phan, A. T., Modi, Y. S., & Patel, D. J. (2004). Propeller-Type Parallel-Stranded G-
Quadruplexes in the Human c-myc Promoter. Journal of the American Chemical
Society, 126(28), 8710-8716. doi:10.1021/ja048805k

66

www.manaraa.com

Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., . .. No¢, F. (2011).
Markov models of molecular kinetics: Generation and validation. The Journal of
Chemical Physics, 134(17), 174105. doi:10.1063/1.3565032

Rapp, U. R., Korn, C., Ceteci, F., Karreman, C., Luetkenhaus, K., Serafin, V., . . .
Potapenko, T. (2009). MYC is a metastasis gene for non-small-cell lung cancer.
PLoS One, 4(6), €6029. doi:10.1371/journal.pone.0006029

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-
65. doi:https://doi.org/10.1016/0377-0427(87)90125-7

Ruggiero, E., & Richter, S. N. (2018). G-quadruplexes and G-quadruplex ligands: targets
and tools in antiviral therapy. Nucleic Acids Res, 46(7), 3270-3283.
doi:10.1093/nar/gky187

Shen, Z., Mulholland, K. A., Zheng, Y., & Wu, C. (2017). Binding of anticancer drug
daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular
dynamics simulations: additional pure groove binding mode and implications on

designing more selective G-quadruplex ligands. Journal of Molecular Modeling,
23(9), 256. doi:10.1007/s00894-017-3417-6

Smith, D. R., Myint, T., & Goh, H. S. (1993). Over-expression of the c-myc proto-
oncogene in colorectal carcinoma. British journal of cancer, 68(2), 407-413.
doi:10.1038/bjc.1993.350

Sponer, J., Cang, X., & Cheatham, T. E., 3rd. (2012). Molecular dynamics simulations of
G-DNA and perspectives on the simulation of nucleic acid structures. Methods,
57(1), 25-39. doi:10.1016/j.ymeth.2012.04.005

Sponer, J., & Spackova, N. a. (2007). Molecular dynamics simulations and their
application to four-stranded DNA. Methods (San Diego, Calif.), 43(4), 278-290.
doi:10.1016/j.ymeth.2007.02.004

Sullivan, H.-J., Chen, B., & Wu, C. (2020). To probe the binding of CX-5461, an anti-
cancer DNA G-quadruplex stabilizer, to human telomeric, cKIT-1, and c-Myc G-
quadruplexes and a DNA duplex using molecular dynamics binding simulations.
Manuscript submitted for publication.

Suntharalingam, K., White, A. J. P., & Vilar, R. (2009). Synthesis, Structural
Characterization, and Quadruplex DNA Binding Studies of Platinum(II)-
Terpyridine Complexes. Inorganic Chemistry, 48(19), 9427-9435.
doi:10.1021/ic901319n

Tawani, A., Mishra, S. K., & Kumar, A. (2017). Structural insight for the recognition of
G-quadruplex structure at human c-myc promoter sequence by flavonoid
Quercetin. Scientific Reports, 7. doi:10.1038/s41598-017-03906-3

67

www.manaraa.com

Watson, P. H., Safneck, J. R., Le, K., Dubik, D., & Shiu, R. P. C. (1993). Relationship of
c-myc Amplification to Progression of Breast Cancer From In Situ to Invasive

Tumor and Lymph Node Metastasis. JNCI: Journal of the National Cancer
Institute, 85(11), 902-907. doi:10.1093/jnci/85.11.902

Zhu, H., Xiao, S., & Liang, H. (2013). Structural dynamics of human telomeric G-
quadruplex loops studied by molecular dynamics simulations. PLoS One, 8(8),
€71380. doi:10.1371/journal.pone.0071380

68

www.manharaa.com

Appendix A
main.R
Pertinent instructions and other comments are shown in green after the ‘#’

symbols. These are not part not the code itself and only serve to help the user.

#Intellectual Property of Brian Chen, Wu Lab, Rowan University

1
2
3 #Install missing packages and load necessary functions/packages
4 source(paste0(getwd(),"/functions.R"))
5 install necessary R_packages()

& library(reticulate)

7 source_python(paste0(getwd(), "functions.py"))

8
B

#create necessary directories and load configuration data
10 create directories()
11 load_config() #edit config.txt before running this line

13 #get ligand atom indices and merge trajectories
14 get_ligand_indices(top_filename = topology file, selection = ligand)
15 merge trajectories()

17 ###
18 ###Edit the "find unbound frames.tcl" to fit your system
19 ###load the topology file and merged trajectory in VMD and run "find_unbound frames.tcl"

20 ##

21 13

22 ###Note: It may be important for you to go back and find a proper rmsd_reference_frame.

23| 4

24

25 rmsd_reference_frame = 1446¢ #this line is optional and is only run if you need to update the rmsd_reference_frame
26

27 #featurization
28 calculate_features()
25 pre_clustering()

31 #clustering.R
32 clustering()
33 plot_SI()

35 ###Define the cluster you want to use for the following steps
36 best_cluster = 4

38 foutput a trajectory containing the representatives for each cluster
39 representatives()

41 jcalculate the frames per cluster
42 frames_per cluster(best_cluster+l, "raw_clusters.txt", percentage = TRUE)

44 poutput validation trajectories for each cluster
45 validation()

47 #add the unbound frames back into the clustering data in their original positions as cluster 1 and increment all other clusters by 2 (thus 0 becomes 2)
48 data = post_clustering()

50 #combine clusters

51 #each list element is a vector of cluster IDs to be combined into one cluster (thus list(vectorA,vectorB,vectorC)) will result in 3 separate combined clusters

52 #H

53 ###IMPORTANT: You MUST list the clusters to combine with the lowest cluster first AND in order of lowest clusters otherwise the cluster identities may not be preserved.
54 ###IMPORTANT: This means c(1,6) must list 1 before 6 and additionally c(1,6) must be before c(2,5) as the low cluster 1 is lower than low cluster 2.

55 Hi

56

57 data = combine_clusters(list_to_combine = list(c(l,3), c(4,5)))
58

59 #output cluster file to "combined_clusters.txt"
60 finalize clusters()

62 #post clustering analysis is optional
€3 post_clustering_analysis()

64

65 #Declare all lag times for which to calculate transition matrices.

66 #c is just a vector containing values such that: c(array value 1, array value 2, ... , array_value_n)
67 #seq creates an array such that: seq(begin, end, by = step_size)

68 lagtimes = c(l, 3, 4 5, 6.7, 8 9, seq(10, 500, by = 10))

69

70 calculate_transition matrices()

71

72 #Plot the implied timescales for all lag times. Uses singular value decomposition.
73 implied timescales()

75 #Transition matrices with lag times ~ frames per trajectory tend to be unreliable thus you may want to exclude some of the higher lag times.
76 lagtimes = c(1, 2, 7, 8, 9, sea(10, 480, 0y
77 implied timescales(log_y = mUm) #chis Bapdl y-axis on the log scale

78
79 #CK Test

80 #Transition matrices for all values involved must exist. By default, this means you must have the transition matrices for 1 and 10, 20, 30 ... x
81 Chapman_Kolmogorov(x = 500, cluster = 2, final = 480) #final is the final original transition matrix to plot

82

83 mfpt = MFPT(optimal_lagtime = #optimal lag time is determined from looking at the implied timescales.
84 stdev = mfpt _stdev(stdev_times = c(seq(200,300,10))) #Use optimal lag time to a point where the data stops looking reliable in the implied timescales.
85 network(lagtime = 250, cutoff = 1, seed = 200) #lagtime = Optimal Lag Time, cutoff = number of transitions_required to_show, seed = any_integer

87 export final(divisor = 1000, decimals = 1) #divisor is the value to divide your mfpt results by (for unit conversion) and decimals is the number of decimals to which to round.

Figure Al. Code in main.R. This figure shows all of the code present in main.R.

69

www.manharaa.com

Appendix B

functions.R

Pertinent instructions and other comments are shown in green after the ‘#

symbols. These are not part not the code itself and only serve to help the user. Table Bl

includes a helpful list of all functions present in functions.R.

Table B1

Functions present in functions.R

Functions given sequentially with its primary purpose.

Function Name Lines Primary Purpose

install necessary R packages | 5-11 Installs necessary R packages, if not installed

create directories 13-20 Creates subdirectories in working directory

load config 22-29 Loads configuration settings

merge trajectories 31-38 Calls merge traj (Appendix C) and stores results

calculate features 40-47 Calls calculate rmsd (Appendix C) and
calculate CoM (Appendix C)

pre clustering 49-61 Preprocesses feature data into “rmsd prep.txt”

rmsd_prep 63-72 Subfunction for pre clustering

remove unbound frames 74-83 Removes unbound frames

clustering 85-90 Calls kmeans (Appendix C)

plot SI 92-109 | Plots the silhouette indices from k-means results

representatives 111-116 | Calls find representative frames and
get representatives (Appendix C)

find representative frames 118-199 | Finds the representative frames of each cluster

frames_per cluster 201-215 | Calculates frames per cluster

validation 217-221 | Calls validation frames and cluster validation
(Appendix C)

validation_frames 223-245 | Outputs all frames of each cluster in
cluster frames directory as text files

recombine 247-272 | Recombines the unbound frames with cluster data

post clustering 274-278 | Calls recombine

combine_clusters 280-317 | Performs cluster combination

finalize clusters 319-321 | Outputs final clusters to “combined clusters.txt”

post_cluster analysis 323-335 | Reobtain frames per cluster, representatives, and
validation

calculate transition matrices 337-343 | Calls prep_data, create tpt, and normalize tpt

70

www.manaraa.com

Table B1 (continued)

Function Name Lines Primary Purpose

prep_data 345-351 Prepares data for
subsequent functions

create tpt 353-386 Outputs transition matrices
into TPT directory as text
files

normalize tpt 388-434 Outputs symmetric

matrices and normalized
matrices into TPT directory
as text files

implied_timescales 436-500 Calculates and plots the
implied timescales

Chapman-Kolmogorov 502-627 Performs the Chapman-
Kolmogorov test

MFPT 629-700 Builds and solves the
MFPT system of equations

hush 702-706 Suppresses unnecessary
output

mfpt_stdev 708-729 Calculates standard
deviations for MFPT

network 731-774 Builds a network model for
transitions

export_final 776-783 Outputs MFPT and

standard deviations to
“final mfpt.txt”

71

www.manaraa.com

1 #Intellectual Property of Brian Chen, Wu Lab, Rowan University

2

3 #source file for all R functions

4

5 Binstall Luscessary R_packages <- f\mcnon()(;check 1f packaqes are installed and install if not

6 #credit to https://stackoverf m/questi heck-for-instal ing-install
7 packages <- C("gg‘plotZ", "reclcula\:e", "foxeach", "doPazallEl", "xq:aph", "expm", "R.utl)s")

8 if (length(setdiff rownames (installed.packages()))) > 0) {

B install.packages (setdiff rownames (installed.packages())))

10)

21 L)

12

13 Hcreate_directories <- functien()(#creates directories for future use

14 dir.create(file.path(getwd(), "rmsds"), showWarnings = FALSE)

15 dir.create(file.path(getwd(), "TPT"), showWarnings = FALSE)

16 dir.create(file.path(getwd(), "representatives"), showWarnings = FALSE)

17 dir.create(file.path(getwd(), results"), showWarnings = FALSE)

18 dir.create(file.path(getwd(), "cluster frames"), showWarnings = FALSE)

19 dir.create (file.path(getwd(), "trajs"), showWarnings = FALSE)

20 dir.create(file.path(getwd(), "CoM"), showWarnings = FALSE)

21 L

22 [Bload _config <- function(config_file = "config.txt"){ #reads config.txt and loads in variables

23 config <- file(config_file, open = "r")

24 tmp = readLines(con = config)

25 eval (parse (text = tmp), envir = parent.frame())

26 close (config)

27 eval (rm(config), envir = parent.frame())

28 trajectory file <<- paste0(trajectory output_name, trajectory output_extension)

29 ¥

30

31 Emerge trajectories <- function()(fmerges all trajectories in trajs directory (in standard sorted order such that 01,02,1,10,19,2,20)
32 variables = merge_traj(out_filename = "traj", out_ext = trajectory output_extension, traj_dir = "./trajs", traj_ext = traj_ext, top_filename = topology file) #this function is loc
33 print ("Trajectories merged to .

34 number of traj <<- as.numeric(unlist(variables[l1])) #stores number of original trajectories

35 frames_per_traj <<- as.numeric(unlist(variables[2])) #stores the number of frames in each of the original trajectories in sorted order
36 frames <<- as.numeric(unlist(variables[3])) #stores the total number of frames of the merged trajectory
37 lagtimes <<- c(l:frames_per_traj) #sets default lagtimes that the user can change later

38 }

39

40 Bcalculate_features <- function(){ #calculates features based on config file settings

41 calculate_rmsd(traj_file = trajectory file, top_file = topology file, rmsd_reference_frame = as.integer(rmsd_reference_frame)) #this function is in functions.py
42 print ("RMSD values calculated.")

43 if (use_center of mass == TRUE){

44 calculate CoM(traj_file = trajectory file, top_file = topology_file) #this function is in functions.py
45 nter of mass values calculated.")

46

47 1

48

49 Bpre clustering <- function(){ #binds feature data into a single matrix and then removes unbound frames
50 features = rmsd_prep()

51 if (use_center of mass == TRUE){

52 filenames <- dir (paste0(getwd(), "/CoM"), pattern =".txt")

53 CoM = matrix(nrow = frames, ncol = 0)

54 for (i in filenames){

55 CoM = chind(CoM, read.table (paste0(getwd(), "/CoM/", i), sep="\n"))

56

57 features = cbind(features, CoM)

s8

59 features = remove unbound_frames (features)

60 write.table(features, file = "./rmsd prep.txt", row.names = FALSE, col.names = FALSE, append=FALSE, sep =" ", eol = "\n")
61 Ly

62

€3 Ermsd prep <- function(){ #takes rmsd values in rmsds directory and puts them together in sorted order (such that 1, 2, 3, 10, 11, 20, 21)
64 file.names <- dir("./rmsds", pattern =".txt")

65 as.numeric(gsub('“rmsd([0123456789]*)\\.txt$', '\\1', file.names)) ->fileNum;

66 file.names = file.names[order(fileNum)]

67 mmsd = matrix(nrow = frames, ncol = 0)

68 for (i in file.names)({

69 rmsd = cbind(rmsd, read.table(paste0("./rmsds/", i), sep="\n", nrows = frames + 1))

70 1

71 return (rmsd)

o)

73

74 Eremove_unbound frames <- function(rmsd){ #deletes rows that match unbound frames.txt from matrix

75 data = matrix()

76 temp = t(read.table("unbound frames.txt", sep=" "))

71 rownames (temp) = NULL

78 data = temp

79 data = as.vector (data)

80 rmsd = as.data.frame (rmsd)

81 rmsd=rmsd[-data,]

82 return (rmsd)

83 }

84

85 Bclustering <- function(){ #runs the clustering. lower and upper K bounds can be declared in config.txt

86 print ("Beginning clustering...")

87 kmeans (rmsdfile = rmsdfile, minK = as.integer(mink), maxK = as.integer(maxK), normalized = as.logical(normalized)) #kmeans function is in functions.py
a8 print ("Clustering finished!")

89 plot_SI()

0 Ly

o1

Figure Bl. Code in functions.R. This figure shows all of the code present in functions.R.

72

www.manharaa.com

92 [plot_SI <- function(){ #plots the SI value for each value of K and shows a table containing the corresponding values

93 library(R.utils) #needed for countLines

94 KMSI_norm = pastel(getwd(), "/EMresults/KMSIresults.txt")

95 number of clusters = countLines (KMSI_norm) [11+1

86 clusters=c (minK:maxK)

97

98 KMSI_norm.df = setNames (data.frame (matrixz(ncol = 2, nrow = number of clusters-1}), c("clusters","sI"})
99 KMSI_norm.df[clusters

100 KMSI_norm.df[2] = read.table(KMSI norm, sep="\n")

101

102 View (KMSI_norm.df)

103

104 library{ggplot2) #needed for the plotting

105 ggplot () +

106 geom_line(data=KMSI norm.df, aes(x=clusters, y=SI, colour="KM norm"}) +

107 1abs(x = "clusters", y = "Silhouette Index") +

108 theme (legend.position="top", legend.title = element blank(})

109 L)

110

111 rClrepresentatives <- function(){ #calls find representative frames and get representatives, essentially outputs a trajectory containing representatives
112 find representative frames (kmK = best _cluster, kmfile = paste0(getwd(),"/KMresults/KMresults", toString(best_cluster),".txt"))
113 print ("Representative frames found. Preparing to output to 'representatives.crd'...")

114 get_representatives() #get_representatives() function is located in functions.py

115 print ("Representative structures outputted to 'representatives.crd'.™)

116 Ly

117

118 [Ifind representative frames <- function(kmK, kmfile, unbound removed=TRUE) { #finds the representative frames for each cluster of a given K
119 rmsdfile = "rmsd prep.txt"

120

121 #create some vectors to store information

122 kmmeans = vector (mode="double", length = kmK)

123 kmreps = vector(mode="integer", length = mK)

124

125 #create dataframe for KM results + features

128 temp = read.table(rmsdfile, sep=" ")

127 © if (unbound removed==TRUE){ #this is almost always defaulted to TRUE

128 rows = length(templ,11)

128) else {

130 rows = frames

dSE -}

132 cols = length(temp[l,])

133 KM = setNames (data.frame(matrix(ncol = cols+2, nrow = rows)), c("frame", rep("rmsd", cols), "cluster"))
134

135 #adds back in the unbound frames as a separate cluster
136 unbound = t(read.table("unbound frames.txt", sep=" "))
137 rownames (unbound) = NULL

138 unbound = as.vector (unbound)

13¢ © if (unbound removed==TRUE) {

140 setdiff (c{(l:frames), unbound)

141 = ag

142 } {

143 c{l:frames)

144 in the unbound frames according to the frame index
145 temp2 = matrix(ncol = cols, nrow = rows)
146 o for(i in unbound) {

147 temp2[i,] = rep(0, cols)

148 | }

146 #checks for NA and puts next line of temp in there
150 j=1

151 & for(i in c(l:rows)){

152 o if(is.na(temp2[il)){

153 temp2[i,] = temp(],]

154 j=3 41

155 }

156 }

157 temp = temp2

158 -}

159 KMIc(2:{cols+1))] = temp

160 temp = read.table (kmfile, sep="\n")

161 rownames (temp) = NULL

162 KM[cols+2] = temp

163

164 #find mean rmsd (ligand all heavy) for each cluster of K-Means Clustering
165 O for (i in c(l:(kmK))) {

166 total = 0

167 counter 0

168 & for (j inm c(l:length (XML, 11))) {

169 o if (KM[J,2+cols] == (i-1)) {

170 total total + KM[], 2]

171 counter = counter + 1

172)

173 }

174 ©o if (counter > 0) {

155 Jmmeans[i] = total/counter

176 } else {

177 print ("something went wrong with counter = " & counter)
178 }

179 b}

180

Figure BI (continued)

73

www.manharaa.com

161 #find representative frames for K-means clustering
182 for (i in c(l:(mK))) {
183 frame = -1

184 best = 995 $change this value if necessary

185 for (j in c(l:length(KM[,11))) {

186 if (KM[j,cols+2] == (i I

187 current = abs (KM[j, 2] - kmmeans[i])

188 if (current < best) {

189 frame = kM[3, 1]

190 best = current

UL - }

192 + }

193)

194 kmreps[i] = frame - 1

195 -}

186

197 View (kmreps)

198 write (kmreps, file = "representatives frames.tzt", ncolumns = 1, append = FALSE, sep = "\n")
158 L)

200

201 Hframes_per cluster <- function({states, filename, percentage=FALSE){ ##edited up to here
202 temp= as.vector (read.table(filename, sep="\n"))

203 rownames (temp) = NULL

204 framespercluster = rep(l, states)

205 E for (i in c(l:length(temp[,11))){

206 framespercluster[templi, 111 = framespercluster[templi, 111 + |

207 }

208 if (percentage==TRUE) {

209 @ for (i in c(l:length(framespercluster))){

210 framespercluster[i] = round(framespercluster[i]/frames, 2)

2410 - }

20z -}

213 View (framespercluster)

214 write.table (framespercluster, "cluster abundance.txt”, append = FALSE, sep = " ", eol = "\n", row.names = FALSE, col.names = FALSE)
215 1}

216

217 Evalidation <- function(){

218 validation frames(states=best_clustert+l, cluster file = paste0({getwd(),"/KMresults/KMresults", toString(best cluster),".txt"), preprocessed = FALSE)
219 cluster validation()

220 print ("Validation trajectories for each cluster can be found in the 'cluster frames' directory.")
221 L}

222

223 validation frames <- function(states, cluster file, preprocessed = TRUE){

224 Z cluster data = as.data.frame(matrixz(ncol = 1, nrow = frames))

225 if (preprocessed == TRUE) {

226 cluster datal,1] = read.table(cluster_file, sep="\n")

221 } else {

228 temp = as.vector(read.table (cluster file, sep="\n"))

229 temp = recombine (temp)

230 cluster datal[,l] = temp

2500 -}

232

233 write.table(cluster data, "raw clusters.tzt", append = FALSE, sep = "\n", eol = "\n", row.names = FALSE, col.names = FALSE)
234

235 vf = vector(mode = "1ist", length = states)

236 E for (i in c(l:length(cluster_datal,11))){

237 cluster = cluster data[i

238 vE[[cluster]] = c(vE[[cluster]], (i-1))

239}

240

241 B for (i in c(l:states)){

242 filename <- paste0(paste0("./cluster frames/cluster", i), " frames.txzt")

243 write.table(as.data.frame(vE[[i]]), file = filename, append = FALSE, sep = "\n", eol = "\n", row.names = FALSE, col.names = FALSE)
244 L}

2450 -}

246

247 [recombine <- function(data){

248 E for (i in c(l:length(datal,11))){

249 data[i,1] = datal[i,1]1+2

250 + }

251

252 #creates an empty matrix of size rows = frames, cols = 1 and fills the rows that are listed in unbound frames.txt with 1
253 temp = matriz(ncol = 1, nrow = frames}

254

255 unbound = t(read.table("unbound frames.tzt", sep=" "))

256 rownames (unbound) = NULL

257 unbound = as.vector (unbound)

258

259 B for (i in unbound){

260 temp[i, 1] =1

261 - }

262

263 #check if row contains NA and if it does, insert the next cluster value from the k-means data into that row
264 J=1

265 for(i in c(l:frames)){

266 g if (is.na(temp[il)){

267 templi, 1] = datalj,1]

268 Jo= 3+

269 }

270 - }

271 return (temp)

2 -}

273

Figure BI (continued)

74

www.manharaa.com

274 post_clustering <= function() {

275 data <- as.vector(read.table(paste0l(getwd(),"/KMresults/", "KMresults", toString(best_cluster),".txt"), sep="\n"))
276 return(as.data.frame (recombine (data)))

277 print ("Unbound frames have been re-inserted as cluster 1 (all other cluster labels have increased by 2).")
278 }

279

280 combine_clusters <- function(list_to_combine) {

281 #iterate over each of the elements in the list

282 for(i in c(l:length(list_to_combine))){

283 #iterate over the entirety of the data

284 for (j in c(l:length(datal,11))){

285 #check if current data element is present in any of the current list element's elements
286 [if (datalj,1] %in% list_to_combine[[ill){

287 #sets current data element to first element of current list element

288 datal[j,1] = list to_combine[[i]][1]

289 }

290 ¥

2010 -}

292

293 #iterate over the data and create a vector containing all unique values

294 unique = vector (mode="integer", length = 0)

295 H for (i in c(l:length(datal,11))){

296 E if ((data[i,l1] %in% unique) == FALSE) {

297 unique = c(unique, datali,1])

298 }

299 I)

300 unique = sort(unique)

301

302 #iterate over the data

303 B for (i in c(l:length(datal,1]1))){

304 renumbered = FALSE

305 #iterate over the values in unique

306 M for (j in c(l:length(unique))){

307 z #if current data value matches a value in unique replace data with unique (but not if it has already been renumbered)
308 if (datali,1] == unique[j] && renumbered == FALSE) {

309 datali,1] =3

310 renumbered = TRUE

S0 |- }

S22 - }

Sa -)}

314

315 states <<- length(unique)

316 return (data)

ST -)

318

319 finalize_clusters <- function(){

320 T write.table(data, combined cluster file, append = FALSE, sep = " ", eol = "\n", row.names = FALSE, col.names = FALSE)
321 }

322

323 Hpost_clustering analysis <- function(optional = FALSE) {

324 frames_per cluster(states, combined_cluster_file, percentage = TRUE)

325 print ("Frames per cluster calculated and outputted to 'cluster_abundance.txt'.")

326 B if (optional == TRUE) {

327 find_representative_frames(kmK = states, combined cluster_ file, unbound_removed=FALSE)
328 get_represem:atives 0]

329 print ("Representative structures (including unbound) outputted to 'representatives.crd'.")
330 print ("Representatives for merged clusters may not be truly representative.")

331 validation_frames(states=states, cluster_file = combined cluster_file)

332 cluster_validation()

333 print("Validation trajectories for each cluster (including unbound) can be found in the 'cluster frames' directory.")
334)

S350 -)

336

337 Hcalculate_transition matrices <- function(){

338 data <<- prep_data()

339 create_tpt ()

340 print("Transition matrices calculated.")

341 normalize tpt()

342 print("Transition matrices were made symmetric and normalized.")

343 -}

344

345 [Hprep_data <- function(){

346 data = setNames(data.frame(matrix(ncol = 1, nrow = frames)), c("Combined Cluster_ ID"))
347 temp = read.table(combined cluster_file, sep="\n")

348 rownames (temp) = NULL

349 data[l] = temp

350 return(data)

SSI0N -}

352

Figure Bl (continued)

75

www.manharaa.com

353 Hcreate_tpt <- function(){

354

355 tpt = matrix(0, nrow = states, ncol = states)

356

357 library(foreach)

358 library(doParallel)

359 registerDoParallel (num_cores)

360

361 B if (number of traj != 1) {

362 foreach (i = lagtimes) %dopars {

363 E for (j in c(0:(number_of_traj-1))){ #loops for total number of trajectories prior to merge
364 E for (k in c(l:(frames_per traj-i))){ #loops for currentframe+lagtime <= frames_per traj, given that currentframe resets every time you reach frames_per_traj
365 tptldatalj*frames_per_traj+k,1], datalj*frames_per_traj+k+i,1]] = tptldata[j*frames_per_traj+k,1], datalj*frames_per_traj+k+i,1]1] + 1
366 ¥

367 }

368 filename <- paste("./TPT/countmatrix”, i, sep="")

369 filename <- paste(filename, ".txt", sep="")

370 write.table(tpt, file = filename, append = FALSE, sep = " ", eol = "\n", row.names = FALSE, col.names = FALSE)
371 tpt = matrix(0, nrow = states, ncol = states) #this line is needed to reset to count matrix to 0 ... but it'll print every time
372 }

373 } else {

374 foreach (i = lagtimes) %dopars {

375 #the print line below doesn't work with parallel for some reason

376 #cat("Calculating Transition Matrix for Lagtime: ", i, "\n")

377 for (j in c(l:(frames-i))) { #loops for all frames+lagtime <= total frames

378 tptldatalj, 1], datal[j+i,1]] = tptldatalj,1], datalj+i,1]1] + 1

379 }

380 filename <- paste("./TPT/countmatrix", i, sep="")

381 filename <- paste(filename, ".txt", sep="")

382 write.table(tpt, file = filename, append = FALSE, sep = " ", eol = "\n", row.names = FALSE, col.names = FALSE)
383 tpt = matrix(0, nrow = states, ncol = states)

384 }

385 i

386 L}

387

388 Enormalize_tpt <- function(){

389 # N(ij) = N(ji) (transpose)

390 # symmetry: Nsym = (N + N(transpose)) / 2

391 library (foreach)

392 library(doParallel)

393 registerDoParallel (num_cores)

394 norm_tpt = matrix(nrow = states, ncol = states)

395 tpt = setNames (data.frame (matrix(ncol = states, nrow = states)), c(l:states))

396 @ foreach (i = lagtimes) %dopar% {

397 filename <- paste("./TPT/countmatrixz",

398 filename <- paste(filename, ".txt", sep=

399 tpt = read.table(filename, sep=" ")

400 E for (j in c(l:states)){

401 E for (k in c(l:states)){

402 #symmetry step

403 norm_tpt[j, k]l = (tptlj,kl+tptik,31)/2

404 }

405

406 filename <- paste("./TPT/symmetricmatrix"

407 filename <- paste(filename, ".txt", sep=

408 write.table(norm_tpt, file = filename, append = FALSE, sep = " ", eol = "\n", row.names = FALSE, col.names = FALSE)
409 norm_tpt = matrix(nrow = states, ncol = states)

410 tpt = setNames (data.frame(matrix(ncol = states, nrow = states)), c(l:states))

411 }

412

413

414 # normalize: P(ij) = N(ij)sym / sum(Nsym for row i)

415 norm_tpt = matrix(nrow = states, ncol = states)

416 Sym_tpt = setNames (data.frame(matrix(ncol = states, nrow = states)), c(l:states))
417 B for (i in lagtimes){

418 filename <- paste("./TPT/symmetricmatrix", i, sep="")

419 filename <- paste(filename, ".txt", sep=""

420 sym_tpt = read.table(filename, sep=" ")

421 Sym_rowSums = rowSums (sym_tpt)

422 for (j in c(l:states)){

423 for (k in c(l:states))(

424 #normalizing step

425 norm_tpt[j, k] = sym_tptlj, k]/sym_rowsums[j]

426 }

427)

428 filename <- paste("./TPT/normalisedmatrix"

429 filename <- paste(filename, ".txt", sep="")

430 write.table(norm_tpt, file = filename, append = FALSE, sep = " ", eol = "\n", row.names = FALSE, col.names = FALSE)
431 norm_tpt = matrix(nrow = states, ncol = states)

432 sym_tpt = setNames(data.frame(matrix(ncol = states, nrow = states)), c(l:states))
433 !

432 L)

435

Figure B (continued). Function create tpt depicted here does not support trajectories of
different lengths. This was changed in a more recent version of the software but the
updated raw code is currently inaccessible due to the COVID-19 outbreak at the time of
this writing.

76

www.manharaa.com

436 implied timescales = function(f = "svd", log_y = FALSE){

437 norm_tpt = matrix(nrow = states, ncol = states)

438 svd_values = matrix(nrow = 3, ncol = length(lagtimes)*states)

439 if (f == "svd"){

440 © for (i in c(l:length(lagtimes))){

441 filename <- paste("./TPT/normalisedmatrix", lagtimes[i], sep="")
442 filename <- paste(filename, ".txt", sep=""

443 norm_tpt = read.table(filename, sep=" ", stringsAsFactors = FALSE)
444 temp=svd (norm_tpt) $d

445 © for (j in c(l:length(temp))){

446 svd_values[2, length(lagtimes) *(j-1)+il=temp[j]

447 }

448 norm_tpt = matrix(nrow = states, ncol = states)

449 -)

450 for (i in c(l:length(temp))){

451 g for (j in c(l:length(lagtimes))){

452 svd_values[l, (i-1) *1length(lagtimes)+jl=lagtimes[j]

453 svd_values[3, (i-1) *length(lagtimes)+j]=i

454 }

455 }

456 } else { #if £ != "svd" #the code attempts to use the eigen solver which often breaks
457 B for (i in c(l:length(lagtimes))){

458 filename <- paste("./TPT/normalisedmatrix", lagtimes[i], sep="")
459 filename <- paste(filename, ".txt", sep="")

460 norm_tpt = read.table(filename, sep=" ")

461 temp=eigen (norm_tpt) $values

462 ©H for (j in c(l:length(temp))) {

463 svd_values[2, length(lagtimes) *(j-1)+il=temp[j]

464 - }

465 norm tpt = matrix(nrow = states, ncol = states)

466 - ¥

467 for (i in c(l:length(temp))){

468 S for (j in c(l:length(lagtimes))){

469 svd_values[1, (i-1) *length(lagtimes)+jl=lagtimes[j]

470 svd_values[3, (i-1) *1length(lagtimes)+jl=i

471 }

472 }

473 ~ }

474 svd_values = t(svd_values)

475 colnames (svd_values) = c("Lagtimes", "Implied Time", "State")

476

477 H for (i in c(l:length(svd values[,1]))){ #performs the implied timescale transformation after solving for eigenvalue
478 svd_values[i,2] = -1 * svd values[i, 1] / log(svd_valuesl[i,Z2])

479 r }

480

481 svd_values = as.data.frame(svd_values)

482 svd_values=svd_values[svd values$State != 1,]

483

484 © if(log_y == TRUE) {

485 likbrary{ggplot2)

486 ggplot (data=svd_values, aes(x=Lagtimes, y=Implied Time, color = as.factor(State))) +
4387 geom_point() +

488 geom_line() +

489 scale_y logl0 () +

490 labs(x = "Lagtime", y = "Implied Time") +

491 theme (legend.position="right", legend.title = element_blank())

492 } else {

493 library(ggplot2)

494 ggplot (data=svd_values, aes(x=Lagtimes, y=Implied Time, color = as.factor(State))) +
495 geom_point() +

496 geom_line() +

497 labs(x = "Lagtime", y = "Implied Time") +

498 theme (legend.position="right", legend.title = element_blank())
499 - }

500 L)

501

Figure BI (continued)

71

www.manharaa.com

502 Echapman_Kolmogorov <- function(x, final = x, steps = x/10, base_lagtimes = vector(mode = "integer”, length = 0), basin = "Basinl", cluster = 1, useBasin = FALSE, user base_lagtimes = FALSE){
503 Ilibrary(ggplot2)

504 Library (expm)

505

506 finalsteps = steps

507 if(final I= x)

508 finalsteps = final/l0

509)

510 #calculates all factors of x that are divisible by 10

511 if (user base lagtimes == FALSE){

512 base_lagtimes = vector(mode = "integer”, length = 0)

513 for (i in c(seq(l0,x/2, by = 10))){

514 if (x8%i

515 base_lagtimes = c(base_lagtimes, i)

516 ¥

517 3

518)

519

520 #calculates the number of steps for the base lagtimes

521 n = vector (mude-"duub'e" length = length(base_lagtimes))
522 for (i in c(i:length(base_lagtimes))){

523 nlil = x/base_lagtimes[i]

524)

525

526 observed_tpt = vector("list", steps+l)

527 count = T

528

529 for (i in c(l, seq(x/steps, final, by=x/steps))){

530 filename <- paste("./TPT/normalisedmatrix’, i, sep="")
531 filename <- paste(filename, ".txt", sep="")

532 observed_tpt[[count]] = read.table(filename, sep=" ", stringsAsFactors = FALSE)
533 count = count + 1

534

535 for (i in c(l:length (base -_lagtimes))) {

536 filename <- paste(" normalisedmatriz", base_lagtimes[i], sep=
537 filename <- paste (fllensme, ".txt", sep="")

538 val_tpt = read.table(filename, sep=" ", stringsAsFactors = FALSE)
539 nam <- paste0("nprob", i)

540 assign(nam, vector("list", n[i]), envir = parent.frame())
541 assign(nam, vector("list", n[il))

542 nprob = vector("list", n[il)

543 for (j in c(l:n[il{

544 o matrlx(val _tpt)

545 temp = temp "%

546 nproh[]] = list (as data. frame (temp))

547)

548 assign(nam, nprob, envir = parent.frame())

549 assign(nam, nprob)

550)

551 m (nprob)

552 Tows = as.integer (steps+ +(length(base_lagtimes)))

553 for (i in base_lagtimes) {

554 rows = rows+x/i

555)

556 df = matrix(nrow = rows, ncol = 2+states*states)

557 Ctemp=NULL

558 for (i in c(i:(states*states)))(

559 ctemp=c (ctemp, paste0 ("Basin”, i))

560

561 colnames(df) = c("Time", ctemp, "Base Lagtime"

562

563 matrices = mapply(get, ls(pattern='nprob’'))

564 lengths = unname (lengths (matrices))

565

566 rowindex =

567 for (i in c(l:length(base_lagtimes))){ #loops as many times as there are nprob matrices
568 for (j in c(l:lengths[il)){ #loops for the length of each nprob matr:
569 df [rowindex, 1] = x*j/lengths[i]

570 af[rowindex, (“+stateststates)] = x/lengths[il

571 rind = 1

572

573 : ((2+states*states)-1))) {

574 mtemp = matrix(unname (unlist(matrices[[i11[31)), nrow = states, ncol = states)
575 df [rowindex, k] = mtemp[rind, cind]

576 cind = cind +

577 if (cind > states)

578 cind = 1

579 rind = rind + 1

580)

581

582 rowindex = rowindex +

563)

584)

585 for (i in c(I:(finalsteps+1))){

586 if (1i=1)

587 df [rowindex, 1] = 1

588) else

589 df[rowindex, 1] = (final/finalsteps)*(i-1)

590)

591 df[rowindex, (2+states*states)] = 0

592 rind = 1

593 cind = 1

594 for (i in c(2:((2+states*states)-1))){

595 mtemp = matrix (unname (unlist (observed_tpt[[il])), nrow = states, ncol = states)
596 df[rowindex, 3] = mtemplrind,cind]

597 cind = cind +

598 if (cind > states) (

599 cind = 1

600 rind = rind + 1

601)

602

603 rowindex = rowindex + 1

604)

605 norm_1 = read.table("./TPT/normalisednatrixl.txt", sep=" ", stringsAsFactors = FALSE)
606 norm_1_v = vector ("double")

607 for (i in c(l:states)){

608 norm 1 v = c(norm 1 v, norm_1[i,])

609)

610 norm_1 v = unname (unlist(nom_1_v))

611 for (i in c(l:length(base_lagtimes)

612 df[rowindex,] = c(i, norm_1_v, (x/lengthslil))

613 rowindex = rowindex + |

614)

615 df = as.data. frame (df)

616 mm(list = 1s(pattern = "nprob”), envir = parent.frame())
€17

618 if (useBasin == FALSE) {

619 basin = paste0("Basin”, (cluster-1)*states+cluster)

620)

621

622 ggplot (data=df, aes(x = df§Time, y = df[[basin]], color = as.factor(df$Base_Lagtime))) +
623 geom_point() +

624 geom_line() +

625 labs(x = "Time (ns)", y = paste0("Erobability for Basin: ", basin)) +
626 theme (legend.position="right", legend.title = element blank())
6271 Ly

628

Figure BI (continued)

78

www.manharaa.com

629 EMFPT <- function(optimal lagtime) {

630 #$Fif = lagtime + sum(PijFjf) for j!=f

631 #Fff = 0

632 norm_tpt = matrix(nrow = states, ncol = states)

633 filename <- paste("./TPT/normalisedmatrix", optimal_ lagtime, sep="")
634 filename <- paste(filename, ".txt", sep="")

635 norm_tpt = read.table(filename, sep=" ")

636 MFPT = matrix(nrow = states, ncol = states)

637

638 A = matrix(nrow=states*states-states, ncol=(states*states-states))
639

640 col names = vector()

641 B for (i in c(l:states)){

642 E for (j in c(l:states)){

643 [if (i 1= j){

644 col names = c(col_names, paste0("r", i, 3j))
645 - }

646 - }

647 .

648 colnames (B) = col_names

649

650 i=j=1 #j is f and i is i

651 count=_

652 count2=0

653 for (k in c(l:(states*states))){ #loop for all possible Fij
654 if (i!=j){ #exclude all rows Fij where i=j

655 count=count+1

656 for (1 in c(l:states)){ #this is i in Fij for columns and j in the equation
657 for (m in c(l:states)){ #this becomes j in Fij for columns and also f in equation
658 if (1!'=m){ #exclude all columns Fij where j=f in above equation
659 count2=count2+.

660 if (m==3){

661 A[count, count2]=norm_tpt[i,1]

662 if (i==1) {

663 Al[count, count2]=A[count, count2]-1

664 - }

665 } else {

666 A[count, count2]=0

667 - }

668 o }

669 - }

670 - }

671 count2=0

672 - }

673 J=i+1

674 © if (j > states){ #once j = states + 1, reset j to 1 and increment i
675 =1

676 i=i+l

677 o }

678 I }

679

680 B = matrix(nrow=states*states-states, ncol=l)

681 B[,1]l=rep(-1 * optimal lagtime, states*states-states)
682

683 syseq = round(solve (A, B), 3)

684

685 mfpt = matrix(ncol=states, nrow=states)

686

687 count = 1

688 B foxr(i in c(l:states))({

689 E for(j in c(l:states)){

690 O if (i==j){

691 mfpt[i,j] = 0

692 } else {

693 mfpt[i,j] = syseglcount]

694 count = count + 1

695 5 }

696 - }

697 .

698 print (mfpt)

699 return (mfpt)

700 L}

701

702 Hhush <- function(code) {

703 sink(tempfile())

704 on.exit(sink())

705 invisible (force (code))

706 L}

707

Figure Bl (continued)

79

www.manharaa.com

706 Emipt_stdev <- function(stdev_times) {

709 # stdev_times is a vector containing all lagtimes to run MFPT on
710

711 all mfpt = as.data.frame (matrix(nrow = length(stdev_times), ncol = states*states))
712 for (i in c(i:length(stdev_times))){

713 temp = hush (MFPT (stdev_times[i]))

714 for (j in c(l:states))(

715 for (k in c(l:states))(

716 all mfpt[i, (j-1)*states+k] = temp([j, k]

717 1

718)

719 }

720

721 mfpt_stdev = matrix(nrow = states, ncol = states)

722 for (i in c(l:states)){

723 for (j in c(l:states))(

724 mfpt_stdev[i,j] = sd(all_mfpt[, (i-1)*states+j])

725 ¥

726 3

727 print (mfpt_stdev)

728 return(mfpt_stdev)

729 }

730

731 Hnetwork <- function(lagtime, cutoff, seed = 0){

732 library (igraph)

733 set.seed(seed)

734 filename <- paste("./TPT/countmatrix", lagtime, sep="")

735 filename <- paste(filename, ".txt", sep="")

736 tpt = read.table(filename, sep=" ")

737 states = length(tptl,1])

738 network.df = as.data.frame(matrix(ncol = 2, nrow = states*states))
739 edge_labels = network.df[,]

740 v=c(

741 for (i in c(l:states)){

742 v = c(v, rep(i, states))

743 }

744 network.df[,1] = v

745 v = rep(c(l:states), states)

746 network.df[, 2.

747

748 deleterows = c()

748 for (i im c(l:states))({

750 for (j in c(i:states)){

751 edge_labels[(i-1)*states+j] = tpt[i,j] #divide this by the rowSum if you want the probability instead of a count
752 if ((tptli,j] < cutoff) || (i == j)){

753 deleterows = c(deleterows, (

754

755 ¥

756 }

757 network.df = network.df[-deleterows,]

758 edge_labels = edge_labels[-deleterows]

759 vertex_colors <- rainbow(n=length(unique ((network.df$v1)))) #can change this palette color to something else such as heat.colors()/terrain.colors()/topo.colors()/cm.colors ()
760 countvector = rep(0, states)

761 for (i in c(l:length(network.df[,11))){

762 countvector [network.df[i,1]] = countvector[network.df[i,11] + 1
763

764 edge_colors = c()

765 count = 1

766 for (i in c(l:length(countvector))){

767 if (countvector[i] > 0){

768 edge_colors = c(edge_colors, rep(vertex_colors[count], countvector[il))
769 count = count + 1

770 ¥

771 }

772 graphl <- graph.data.frame(d = network.df)

773 plot(graphl, edge.label = edge labels, vertex.color = vertex colors, edge.label.color = edge_colors, edge.color = "black”, layout=layout with_lgl(graphl))
774 L)

775

776 Hexport_final <- function(mfpt_optimal = mfpt, mfpt_stdev = stdev, divisor=l, decimals = 3){
777 out = as.data.frame(matrix(nrow = states, ncol = states))

778 for (i in c(l:states)){

779 for (j in c(l:states)){

780 temp = "

781 temp = paste0(temp, toString(round (mfpt_optimalli,j]/divisor, decimals)), "+", toString(round (mfpt_stdev([i,j]/divisor, decimals)))
782 outli,j] = temp

783 }

784 }

785 print (out)

786 m(mfpt, stdev, envirssys.frame(-1))

787 write.table(out, "final mfpt.txt", append = FALSE, sep = " ", eol = "\n", row.names = FALSE, col.names = FALSE)
788 }

Figure BI (continued)

80

www.manharaa.com

Appendix C

functions.py

Pertinent instructions and other comments are shown in green after the ‘#

symbols. These are not part not the code itself and only serve to help the user. Table C1

includes a helpful list of all functions present in functions.R.

Table C1

Functions present in functions.py

Functions are listed in sequential order with their primary purpose.

Function Lines Primary Purpose

get ligand indices 10-20 Obtains atom indices of the ligand

merge traj 22-42 Merge trajectories and output to “traj.crd”

calculate_rmsd 44-71 Calculates RMSD values

calculate CoM 73-121 | Calculates center of mass (X, Y, Z)

kmeans 123-142 | Performs k-means clustering

get representatives 144-161 | Outputs representatives to
“representatives.crd”

cluster validation 163-186 | Outputs validation trajectories to

cluster frames directory

81

www.manaraa.com

1 #Intellectual Property of Brian Chen, Wu Lab, Rowan University

2

3 import mdtraj as md

4 import numpy as np

5 import os

6 from sklearn import preprocessing

7 from sklearn.cluster import KMeans

8 from sklearn import metrics

el

10 [def get_ligand indices(top_filename = "top.pdb", selection = ""):

11 global ligand all atoms

12 global ligand heavy_atoms

13 top = md.load(top_filename)

14 #write all atom indices to file "ligand all_atoms.txt"

451 ligand _all_atoms = top.top.select(selection)

16 ligand all atoms.tofile("ligand all atoms.txt", sep = " ", format="")

17 #write only heavy atom indices to file "ligand heavy atoms.txt"

18 selection = selection + " and element !=H"

19 ligand heavy_atoms = top.top.select(selection)

20 ligand heavy_atoms.tofile("ligand heavy atoms.txt", sep = " ", format="")

21 - return

22 [def merge_traj(out_filename = "traj", out_ext = ".crd", traj_dir = "./trajs", traj_ext = ".crd", top_filename = "top.pdb"):
23

24 #gets a list of all filenames with extension in directory

25 traj_filenames = []

26 B for file in os.listdir(traj_dir):

27 & if file.endswith(traj_ext):

28 traj_filenames.append(os.path.join(traj_dir, file))

29

30 trajectories = [md.load(i, top = top_filename) for i in traj_filenames]

31

32 number_of_trajs = len(trajectories)

33

34 #joins all trajectories and then saves one final at the end

35 B for i in range (1, number of trajs):

36 trajectories[0] = trajectories[0].join(trajectories[i])

37

38 nucleic_atoms = [x for x in range(0, trajectories[0].n_atoms) if x not in ligand all atoms]

39 trajectories[0].superpose (reference=trajectories[0], frame=0, atom indices=nucleic_atoms, ref atom indices=nucleic_atoms)
40 out_filename = out_filename + out_ext

41 trajectories[0].save (out_filename)

42 L return number_of trajs, trajectories[0].n_frames / number of_ trajs, trajectories[0].n_frames

43

44 Rdef calculate rmsd(traj_file = "traj.crd", top_file = "top.pdb", rmsd reference frame = 0, individualatoms = False):
45

46 traj = md.load(traj_file, top=top_file)

47 ligand all_atoms = np.loadtxt("ligand all atoms.txt", dtype = "int", delimiter = " ")

48

49 #In theory this alignment is not needed as it should have already been done during merging.

50 nucleic_atoms = [x for x in range(0, traj.n_atoms) if x not in ligand all_atoms]

51 traj.superpose (reference=traj, frame=0, atom_indices=nucleic_atoms, ref_ atom indices=nucleic_atoms)
52

53 #Compute RMSD of all ligand heavy atoms

54 #Compute the RMSD manually without additional alignment.

50 #documentation for this code is at https: ithub.com/mdtraj/mdtraj/issues/1188

56 #original code multiplies the mean by 3 but this is not supported by RMSD equation so it was removed
57 #traj.xyz gives coordinates in nanometers (10~-9) instead of angstroms (10%-10) so I have multiplied values by 10
58 rmsd = np.sqrt (np.mean (np.square (10*(traj.xyz[:,ligand_all atoms]-traj.xyz[rmsd_reference_ frame,ligand all atoms])),axis=(1,2)))
59 rmsd.tofile("./rmsds/rmsd.txt", sep="\n", format="")

60

61 #Compute RMSD of each ligand heavy atom if individualatoms == True (default is False)

62 { if individualatoms == True:

63 individual_atom indices = np.loadtxt("ligand heavy atoms.txt", dtype = "int", delimiter = " ")
64

65 O for i in individual atom_indices:

66 i=0

67 j.append (i)

68

69 rmsd = np.sqrt(np.mean(np.square(traj.xyz[:,jl-traj.xyz[rmsd reference frame, jl1), axis=(1, 2)))
70 rmsd.tofile("./rmsds/rmsd{}.txt".format(i), sep="\n", format=""

. return

72

Figure C1. Code in functions.py. This figure shows all of the code present in
functions.py. Function merge traj depicted here does not return the number of frames for
each individual trajectory. This has been fixed in a more recent version of the software
but the updated raw code is currently inaccessible due to the COVID-19 outbreak at the
time of this writing.

82

www.manharaa.com

73 Eidef calculate CoM(traj_file = 'traj.crd', top file = 'top.pdb'):

74

75 traj = md.load(traj_file, top=top_file)

76 ligand_heavy atoms = np.loadtxt("ligand heavy atoms.txt", dtype = "int", delimiter =)
77

78 #In theory this alignment is not needed as it should have already been done during merging.
79 nucleic_atoms = [x for x in range(0, traj.n_atoms) if x not in ligand all atoms]

80 traj.superpose (reference=traj, frame=0, atom indices=nucleic_atoms, ref_atom indices=nucleic_atoms)
81

82 mass=[]

83

84 #appends mass values to character string

85 o for i in ligand_heavy atoms:

86 s1 = str(traj.top.atom(i))

87 x = sl.split('-', 1)

88 1 = list(x[1])

89 if 100] == 'C':

g0 [mass.append (12.0107)

91 o elif 1[0] == 'N':

92 [mass.append (14.0067)

93 B elif 1[0] == '0':

94 mass.append(15.9994)

=] elif 1[0] == 'P':

96 mass.append (30.9737)

91 © elif 1[0] == 'S':

o9 | mass.append (32.0650)

9 B else:

100 #since this is being called from R package reticulate, it's not really possible to send error messages.
101 #this is just a blanket handle for exceptions for now that can be edited to include other elements.
102 mass.append (0)

103

104 total mass = sum(mass)

105 xyz_mass = 10*traj.xyz[:,ligand heavy atoms] #multiplying all of these by 10 as it gives the xyz coordinates in nanometers(10%-9) instead of angstroms(10+-10)
108

107 for i in range(0, traj.n frames):

108 © for j in range (0,3

100 | xyz_mass[:1[il[:,3] = [a*b for a,b in zip(xyz mass[:1[il[:,j], mass)]

110

111 center=[]

112 labels=["x","y" g |

113

114 g for i in range(0,3):

115 @ for j in range (0, traj.n_frames):

116 | center.append (sum(xyz_mass[:]1[3]1[:,i])/sum(mass))

117 & with open('./CoM/CoM{}.txt'.format(labels[i]), 'w') as f:

118 B for item in center:

aT90 f.write("$s\n" % item)

120 center = []

con i return

122

123 [Edef kmeans(rmsdfile = "rmsd_prep.txt", minK = 2, maxK = 30, normalized = True):

124

125 B if normalized == True:

126 | data = preprocessing.normalize (np.loadtxt (rmsdfile, delimiter=" "))

127

128 sI=1[1

129

130 #does all the clustering and writes the results of each clustering to a separate file
131 B for i in range(minK, maxK+l):

132 #print ("Clustering for K={}".format (i))

133 kmeans = KMeans(n_clusters=i, random_state=0).fit predict(data)

134 kmeans.tofile('./KMresults/KMresults{).txt'.format(i), sep="\n", format="")

135 o 121 >a;

136 SI.append (metrics.silhouette_score(data, kmeans))

a3

138 #writes the Silhouette Indices to file

139 © with open('./KMresults/KMSIresults.txt', 'w') as f:

140 B for item in SI:

141 f.write("3s\n" % item)

4288 - return

143

Figure C1 (continued)

83

www.manharaa.com

144 [Hdef get_representatives(traj_filename = 'traj.crd’, top_filename = 'top.pdb', out ext = '.crd’):

145

14g traj = md.load(traj_filename, top=top filename)

147 #in theory the subseguent alignment is not necessary since it should have been aligned when merged
148 nucleic atoms = [x for x in range(0, traj.n_atoms) if x not in ligand all atoms]

148 traj.superpose (reference=traj, frame=0, atom indices=nucleic atoms, ref atom indices=nucleic atoms)
150

181! #makes an array with frames file and deletes empty line at end if there

152 frames_file = open({'representatives frames.txt', "r")

153 frames = frames file.read().split('\n'")

1= if not frames[-1]:

S5 - del frames[-1]

156 frames = (np.asarray(frames)).astype (int)

157

158 #creates subset of trajectory containing only frames in array

159 new_traj = traj[frames]

160 new_traj.save("representatives" + out_ext)

161 - return

162

163 Hdef cluster validation(main traj filename = 'traj.crd', top filename = 'top.pdb', frames dir = './cluster frames', out ext = '.crd'):
164 main_traj = md.load(main traj_ filename, top=top filename)

165 nucleic_atoms = [x for x in range(0, main traj.n atoms) if x not in ligand all_atoms]
lee main_traj.superpose(reference=main traj, frame=0, atom indices=nucleic_atoms, ref atom indices=nucleic atoms)
167

168 frames filenames = []

169 © for file in sorted(os.listdir(frames dir)):

170 g if file.endswith('.txt'):

171 - frames filenames.append(os.path.join(frames dir, file))

172

173 frames filenames.sort (key=lambda f: int(''.join(filtex(stxr.isdigit, f})})

174

175 count = 0

196 do for i in frames filenames:

177 count = count + 1

178 frames file = open(i, "r")

178 frames = frames file.read{().split{'\n')

180 H if not frames[-1]:

181 -~ del frames[-1]

182 frames = (np.asarray(frames)).astype(int)

183 new _traj = main_traj[frames]

184 out filename = frames dir + '/cluster' + str(count) + out ext

185 - new_traj.save(out_filename)

186 return

BTN -

Figure C1 (continued)

84

www.manharaa.com

Appendix D
find_unbound_frames.tcl
Pertinent instructions and other comments are shown in green after the ‘#’

symbols. These are not part not the code itself and only serve to help the user.

1 #Define the maximum distance in angstroms to be considered a contact

2 #change the 3 to whatever value in angstroms you want

3 set contact distance 3

4

5 #Define the number of contacts required to be considered bound

& #Change the 20 to whatever number you want

7 set cutoff 20

g

g #Define your ligand
10 #Using the VMD atomselect language, change the "resname SPR" to whatever your ligand is
13 set ligand [atomselect top "resname SPR"]
S
13 #Define your receptor/gquadruplex/binding site
14 #Using the VMD atomselect language change the nucleic to whatever your system is
15 #For a G-Quadruplex system, you can probably leave this as is.
16 set ggplx [atomselect top nucleic]
1
18

18 ### Below this point is the actual script.
20 ### Do not edit this unless you know what you are doing.

21 FH#

22

23 set frames [molinfo top get numframes]
24 set ocut []

25 for {set a 1} [%a < Sframes} {imcr a} {
26 Sligand frame Sa

27 Sgagplx frame Sa

28 lassign [measure contacts Scontact distance Sgaplx $ligand] Donors Acceptors
29 if {[llength SDonors] < Scutoff} {
30 lappend out 5a

31 }

32 }

33 set outfile [open unbound frames.txt w]
34 puts Soutfile Sout
35 close Scoutfile

Figure DI. Code in find unbound_frames.tcl. This figure shows all of the code present in
find unbound frames.tcl.

85

www.manharaa.com

Appendix E

config.txt

1 ligand = "resname SPR"

2 traj ext = ".crd"

Sl trajectory output name = "traj"

4 trajectory output extension = ".crd"
5 topology file = "top.pdb"

& rmsd all atoms = FALSE

1 use center of mass = TRUE

8 rmsdfile = "rmsd prep.txt"

& minK = 2

10 maxK = 30

11 normalized = TRUE

2 rmsd reference frame = 0

13 num cores =1

14 combined cluster file = "combined clusters.txt™

Figure E1. Configuration file. This figure shows all of the variables in the configuration
file (config.txt).

86

www.manharaa.com

Appendix F

RMSD, Atom Contacts, and Last Snapshots

- T T .
| | | | | | Trajectory |1 E
I i I ‘ | \ I \ I 1 I \ I \ I | e ——=
| | | | | | | | | | | | | | | | | Trg{'ectorv 2
n T T T T T T T T T T T T T T T T T T =
. L e BT i VTV G T P R L P
I I I | I | I | I | I | I | I I I Tri_qﬂctow 3 =
I I / I / I / I I / I I | Trajectory 4
I T T T T } i T T T T } T T T T e

| Trajectory |5

B D EEBTE ol i chth SNERD S NERE SNERG SN RG SR SR SRR SRR

- T T T T T T T T I
I I I / I / I / I / I / I / I I I Trg{'ectorv 6 o
I I I | I | I | I | I | I | I I I Trgiectorv 7 o
= T T T T T T T T T T T T T T T T T =
| | | | | | | | | | | | | | | | | Trajectory B =
= T T T T T T T 1 T 1 T T T T T T T T
I I I | I / I | I | | / I | I I | Trg{'ectorvﬁ .
C T T T T T T T 1 T T T T T 1 T T T T _
| | | | | | | | | | | | | | | | | Trajectory10
g T T T T T T T T T T T T T T T T T T T 1
~— e o - =
=] | I I / I / I / I / I / | | I | | Trqectow (1
o0 T T T T T T T T T T T T T T T T T T n
=,]
o SRR IO, RGOV e
| | I | I | I | I I | | | Trajectory 12
| I | I I 1 | 1 | 1 I 1 I 1 | I I + |

| | | | | | | | | | | | | | | I | Trajectory13 |
T T 1 T T T T T 1 T T T T T 1 T T I T

| Trajectory 14
sfectony

8583 ?IS$ 553

i T T T T T T T T T T T T T T 5
! | I / | / I / | / I / I / I I I Trg{‘ectorv A5

I~ T T T T T T T T T T T T T T T T T T 3
| | | | | | | | | W
T T T T T T T T T T T T T T T T T T

Bs3z8E3I8E2 2?8 328885233882
1

I I I | | | | | | | |] I T | | |
3 T T T T T T T T T T T T T T T T N
I T I I I] I] I] I I T TrajeIory 19—
e T T T T T T T T T T T T T T T = T =
e A e o™t e R g e N Pttt —
I | | | | | I | | | | | | | | | | Trg{‘ectorv 20 |
T T T T T T T T T T T T T T T T T T g
I I | I / I / | | I I I Trg{'ectorv 21 7
L T T T T T T T T T T T T T T T T T T |
I I I] I I 1 I I 1 I] [1 I 1 [Trajectory 22
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Time (ns)

Figure FI. Ligand RMSD. Ligand RMSD in the 33 free ligand binding simulations of
DBDI to the Pu24 G-quadruplex.

87

www.manaraa.com

- T T T T T 1 i
0 P C— i
20 —
| | | | | | | | | | | | | | | | | TraPcio 3
T T T T T T T T T T T T T T T T T = \Q
S0 =
a0l =
20— =
20 i T T I i e e g, M I I i
T T T T T T T T T T T T T T T T T T
sl
. |
2 | | | | | | | | | | | | | | | | Trajectory 25 |
o T T T T T T T T T T T T T T T T T T]
W i
& | | | | | | | | | I | | | | | | | Trajectory26 |
& T T T T T T T T T T T T T T T T T 7
40 -
20
o | | | | | | | | | | | | | | | | | Trajectory 27
ﬁ; U T T T T T T T T T T T T T T T T T ‘Pc T]
Bl 5
[gt AL:
= | | I] | | | | | | | | | | | | Tra{ﬂory_'rZS_
ool T f T T T T T T T T T T T T B
40— <)
20 —
| | | | | | | | | | | | | | | | | Trajectory 29
T T T T T T T T T T T T T T T T T 'Fc T
60
5 |
o | | | | | | | | | | | | | | | | | Trajectory 30
T T T T T T T T T T T T T T T T T T T
o |
" WWW
0 =
| | | | ! | | | | | | | | | | | rajectory 31
T T T T T T T T T T T T T T T T Hecony
60 =
.WE“ :
20 o
Trajectory 32
o+ T
i il
2 i s | | | | | | | | Trajectory33
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Time (ns)

Figure FI (continued)

88

www.manharaa.com

60|
40|
20|
0|
80
60|
40|
20|
0
80|
60|
40|
20|
0|
60|
.
20|
0|
60|
7
20 - £
o 1 I I I | I I I | | I | I | | | Trqeclomﬁ =
| T T T T T T T T T T T T T T T T T T _
40|
20 L
0= 1 | | | | | | I 1 | | | | | g{ectorws —
G T T T T T T T T T T T T T T T T T T =
g o
20—
0 I I I | | | I | |
60| =
40|
20| %
0 | | | | | | | | | | | | | | | | | Trajectory8 |
0 T T T T T T T T T T T T T T T T T =
sl
0 i
20 . —
= I I I / I / I I | / | I | I / | | Trqectorvﬁ =
80 T T T T T I T T T T T T T T T T T T =
o]
0=
“WW”WWNMWWMWwWMWW
B T | | | | | | | | | | I | | |~ Trajectory10
@ s0 | | | [| [| | | I [| I | | | [[l | -
1—'407
Sa .
oo | | | | | | | | | | ajectory 1 -
el T T T T T T T T T T T T T T T T T T
EWW”WMWVWWWWMMMWW
Bl i
e .
< 0 | I I / I / I I I | / I / I / | / TrqectorvHZ e
[T T T T T T T T T T T T T T T T T T m
sl =
20|
ot | | | | | | | | | | | | | rajectory |13 "5
o o T T T T T T T T T T T T T T T i T
il
20| - =4
o | | | | | 1 | I | | I | | | Trqectomﬂ =
= T T T T T T T T T T T T T T T T T T =
MWMNWWWMW“WWWWWWWW
40|
20 . by
[I I I / I / I I I | / | / I / / / Trqectomﬁ =
~i= T T T 7 T T T T T T T T T T =
40|
20 1 sl
[I I | | I | I I | | | I | I | | | Trz_qsctorvﬂﬁ =
HE T T T T T T T T T T T T T T T T T T =
Gl -
20 B
o= | | | | I | | | | | | | | | Trajectory| —
S T T I T T T T T T I T T T T I T E
|
20| 2 —
] | | | | | | | | | | | | | | | | |__Trajectory 18
o m T T T T T T T 7 T
40|
2 i it
o I I | | I l I I | / / I | I l l | TrqectorvﬁB =
0 I T T T T T T T T T T T T T T T T T T 5|
7
2|
] 1 | 1 | | | | | | | | | | | | | | Trajec =
ol T T T T T T T T T T T T T T T T T I
| B i
20| ‘]" —
0 I | h ! I | | | I | | | | | raject A
o T T T T T T T T T T T T T T T T T AEEE =]
40|
20| ¥ =
o= I I | | | | | | | | | | | | | | | Trajectory 22
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Time (ns)

Figure F2. Atom contacts. Atom contacts between DBD1 and the Pu24 G-quadruplex in
the 33 free ligand binding simulations.

&9

www.manaraa.com

o
S
a | | | | | | | | | | | | | | | Tra"eﬁorvm E
i 1 T T 1 T T 1 1 T 1 1 T T 1 T T 1 T m
i
20 124
o | | | | | | | | | | | | | | a -
B 1 T T 1 T T 1 1 T 1 1 T T 1 T T 1 'Pc T m
il _
20
0 | | | | | | | | | | | | | 4
& 1 T T 1 T T 1 1 T 1 1 T T 1 T T 1]
il
P T 26 |
0 | | | | | | | | | | | | | | Trajectory -
0= 1 T T 1 T T 1 1 T 1 1 T T \ T 1 'Pc
w0 i
g]
mo | I | | | | | | | | | | | | | | TrchtowET B
ol 1 T T 1 T T 1 1 T 1 1 T T 1 T T 1 T m
0 40 1]
Q2 G i
o | | | | | | | | | | | | | | rd y -
Ew— 1 T 1 T T 1 1 T 1 1 T 1 T T ‘ =
I -
0
60|
40|
20|
[
60|
40|
20
0
60
40|
20
0
5
4
3 =
1 | | | \ | | ! \ | \ \ | | \ | | | Trajectory33 |
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Time (ns)
Figure F2 (continued)
90

www.manharaa.com

Figure F3. Last snapshots. Last snapshot of the 33 free ligand binding simulations of
DBDI1 to the Pu24 G-quadruplex.

91

www.manharaa.com

10 - Top/No intercalation

Figure F'3 (continued)

92

www.manharaa.com

Figure F3 (continued)

93

www.manharaa.com

Figure F3 (continued)

www.manharaa.com

Appendix G

Trajectory Snapshots

*&%‘5

ectnry 2

=

Trajectory 3
‘,,g v
=y

151ns 552ns

639ns

,{‘

00ns 08ns. 297ns 684ns 1001ns

.
o AR X
S

Aoy
P
i

Trajectory 8
) R .®
- R | -
N o !
: -
25 -
00ns 12ns 386ns 750ns 1001ns

Figure G1. Snapshots of trajectories with top final binding poses. Trajectories of the
primary binding pathway of DBD1 to the top site of the Pu24 G-quadruplex.

95

www.manharaa.com

= =
g

oA

00ns 02ns 156ns 506ns 1001ns

Eﬂuw 12
¢

-

: -
‘ F
00ns

Trajectory 15

¢
H EE
00ns

18ns

Trajectory 16

127ns

00ns 9ns 333ns 7i6ns 1001ns

Figure G1 (continued)

96

www.manharaa.com

1001ns

www.manharaa.com

Trajectory 6

=sdpodod A

524ns T2Ins 1001ns

Trajectory 10

1001ns

1001ns
X f
00ns 15ns 379ns 617ns 1001ns
Trajectory 26
‘uf“l""
A
i‘\@ o] .
- f - - .
II:II]ns LB0ns 1001ns

Figure G2. Snapshots of trajectories with top final binding poses with side transition.
Trajectories of the secondary binding pathway of DBDI to the top site of the Pu24 G-
quadruplex via a side binding.

98

www.manharaa.com

Trajectory 27
f

5 il
| %
1?1ns 621ns 1001ins
Trajei:tuw ’1’9
1001ins
ijectuqr 31
" »
| ég %
33n5 Iﬂ'ns 739ns 1001ns
ngectunr 32

0dns
Figure G2 (continued)

1001ns

99

www.manharaa.com

Trajectory

00ns 191ns 456ns 800ns 1001ns

Figure G3. Snapshots of trajectories to side final binding poses. Trajectories of the
binding pathway of DBD1 to the side site of the Pu24 G-quadruplex via a bottom/top
binding.

100

www.manharaa.com

Trajectory 24

Trajectory 28

00ns 140ns 329ns 684ns

Figure G4. Snapshots of trajectories with bottom final binding poses. Trajectories of the
binding pathway of DBD1 to the bottom site of the Pu24 G-quadruplex.

101

www.manharaa.com

Trajectory

00ns 85ns 240ns 631ns 1001ns

Figure G5. Snapshots of trajectories with bottom final binding poses with side transition.
Trajectories of the binding pathway of DBD1 to the bottom site of the Pu24 G-
quadruplex via side binding.

102

www.manharaa.com

	Development and implementation of a coarse-grained Markov State Model
	Recommended Citation

	Microsoft Word - Draft_Final

