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Abstract 

Brian Chen 
DEVELOPMENT AND IMPLEMENTATION OF A COARSE-GRAINED MARKOV 

STATE MODEL 
2019-2020 

Chun Wu, Ph.D. 
 Master of Science in Bioinformatics  

 

 

 Markov State Models (MSMs) are constructed from Molecular Dynamics (MD) 

simulation data, high-resolution spatial and temporal information stored in the form of 

trajectories, of biological processes, such as ligand-receptor bonding, as a model to 

understand detailed kinetic information. Traditional MSM implementations involve a 

clustering step that clusters MD trajectories into thousands of experimentally unverifiable 

clusters known as “microstates” before lumping them together into “macrostates”. This 

work details a novel software implementation, using a combination of R, Python, and 

Tcl, that I have created for the purpose of creating a coarse-grained MSM that directly 

clusters the MD trajectories into a handful of experimentally verifiable clusters while 

maintaining the Markovian property. The coarse-grained MSM implementation was 

designed to require minimal technical experience while still being robust enough for 

usage in studying a variety of biological processes. In addition, this coarse-grained MSM 

implementation has already been used as part of several works to explore the binding 

mechanisms of various ligand-receptor complexes that have shown potential in the 

treatment of neurodegenerative diseases and various cancers. 
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Chapter 1 

Introduction 

1.1 Motivation 

Ligand-receptor binding is a major biological process in which a ligand, usually 

some sort of small molecule, binds to a receptor, some sort of target molecule (Changeux 

& Edelstein, 2011). Molecular Dynamics (MD) simulations are a powerful tool that can 

be used to obtain high-resolution information about many biological processes and puts 

them in a series of snapshots, otherwise known as trajectories (Jirí Sponer & Spacková, 

2007). Markov State Model (MSM) analysis, a method to further analyze the kinetic 

information provided by MD simulations, traditionally separates these snapshots into 

thousands of “microstates” via clustering before performing its analysis (Pande, 

Beauchamp, & Bowman, 2010). However, these “microstates” are experimentally 

unverifiable. In this thesis, the development of software to perform a modified version of 

MSM analysis, hereafter referred to as “coarse-grained MSM analysis”, that uses 

“macrostates”, created by clustering those snapshots into a handful of experimentally 

verifiable clusters, is detailed and applied to several ligand-receptor systems, providing 

invaluable kinetic information. 

1.2 Biomolecule Dynamics 

Folding and binding are two major biochemical processes essential to biological 

activity. Protein folding is the process in which a protein structure determines its 3-

dimensional shape, otherwise known as its tertiary structure (Dill, Ozkan, Shell, & Weikl, 

2008). This tertiary structure plays a key role in determining the protein’s biological 

function. On the other hand, binding can apply to several biological mechanisms such as 
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but not limited to enzyme-substrate binding or ligand-receptor binding (Changeux & 

Edelstein, 2011). Of particular importance to this thesis is ligand-receptor binding, 

usually a process in which a small molecule binds to a target structure. 

1.3 MD Simulations 

Molecular dynamics simulations provide high spatial and temporal resolution in 

the form a series of snapshots, otherwise known as a trajectory. MD simulations are 

powerful tools that have been used to offer insights into many biological processes such 

as protein folding, ligand-receptor binding, and other dynamic processes that cannot be 

adequately captured by static methods such as NMR or X-ray crystallography. MD 

simulations have become a powerful and valuable tool over the past two decades for 

discovering details of biological processes (J. Sponer, Cang, & Cheatham, 2012; Jirí 

Sponer & Spacková, 2007; Zhu, Xiao, & Liang, 2013). Molecular modeling techniques 

are widely used to understand the binding of small molecules and provide a good 

structure model of these complexes. Several studies have used molecular modeling 

techniques in exploring the anti-cancer effect of various small molecules (Bhat, Mondal, 

Sengupta, & Chatterjee, 2017; Buket, Clement, & DanZhou, 2014; Dai, Carver, Hurley, 

& Yang, 2011; Deng, Wickstrom, Cieplak, Lin, & Yang, 2017; Kang & Park, 2009; Ma 

et al., 2012). 

1.4 Clustering 

Clustering is the act of grouping a set of n samples using m features, parameters 

of the samples that can be measured for similarity, into k groups, otherwise known as 

clusters. Various clustering algorithms can be used for any given cluster analysis task and 

there currently is not one best algorithm for all tasks. Clustering algorithms can be 
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divided into two primary categories: supervised and unsupervised. Supervised clustering 

uses training data, data where the correct clusters have already been determined, to learn 

how to cluster the experimental data. Unsupervised clustering does not have training data 

and simply applies the algorithm directly to the experimental data. While there are other 

subdivisions for clustering algorithms, they do not affect the main topic of this work 

significantly and thus they will be excluded from mention. Typically, with MD 

simulations the clustering algorithms that are used are unsupervised clustering 

algorithms; there are likely many reasons for this but one of them is that there is simply 

not enough suitable training data for most systems (Pande et al., 2010). Three 

unsupervised clustering algorithms are frequently used in conjunction with MD 

simulations: single-linkage, spectral clustering, and k. 

Single-linkage clustering performs an analysis of each individual sample 

compared against every other individual sample within a given cutoff in order to cluster 

the samples. Though typically very accurate, the long runtime of this sort of clustering 

limits the amount of clustering problems to which it can be applied to problems that have 

a small sample size. Spectral clustering is often an even slower algorithm than the single-

linkage clustering and clusters based on the eigenvalues of a similarity matrix that is 

constructed from the original data. Similar to single-linkage clustering, spectral clustering 

is often seen as impractical unless the sample size is small. On the other hand, k-means 

clustering partitions each sample into one of k clusters such that within-cluster variance is 

minimized. Comparatively, k-means clustering is a significantly faster algorithm that can 

be run even on relatively large datasets, but may be slightly lesser in terms of accuracy 

for clustering MD trajectory frames. 



www.manaraa.com

4 

   

1.5 MSM 

Markov State Models are constructed from MD simulation trajectories and are 

used to understand detailed kinetic information about biological processes (Pande et al., 

2010). MSMs divide the simulation data into various clusters called “states” and provide 

the kinetic information by analyzing the stochastic process of the transition between 

states at equilibrium. It maintains the Markovian property in that the model is 

memoryless such that the probability to transition to a state is only dependent on the 

present state. One of the major issues with the traditional MSM implementation 

methodology is that it uses thousands of states called “microstates” that are not 

experimentally verifiable.  
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Chapter 2 

Coarse-Grained MSM Analysis 

2.1 Introduction 

Chapter 2 will discuss the theory and implementation of a coarse-grained MSM 

analysis using the software I developed. The general principles of the code and relevant 

equations are provided. All MSM analyses were predominantly performed in R, with 

some usage of VMD and Python. Some basic requirements to using this software will be 

a basic understanding of how to use R graphical interfaces, such as RStudio or RGui, as 

well as a basic understanding of VMD and its atom selection language. 

2.2 Installation & Setup 

This coarse-grained MSM program was developed to run on the Ubuntu operating 

system version 18.04 but should be compatible with newer versions. Support for 

Windows and Mac operating systems has not been developed but the coarse-grained 

MSM program should be compatible assuming the requisite packages support those 

operating systems. Development in R was performed using R version 3.6.0 but may 

require newer versions based on the requisite R packages. Similarly, Python version 3.5.1 

was used in the development of this software but newer versions may be required based 

on the requisite Python packages. The list of R packages used in this software include 

ggplot2, reticulate, foreach, doParallel, igraph, expm, and R.utils. Installation of these R 

packages will be handled by the coarse-grained MSM software and no extra user 

installation is required outside of the R programming environment. In addition to 

installation of the Python environment, user installation of the following Python 

packages, either through pip or Anaconda, and their prerequisites is required: mdtraj, 
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numpy, os, scikit-learn. It is recommended to install the latest version of VMD. After 

successful installation of requisite software, create a directory and extract the software 

from the archive. The coarse-grained MSM software can be run from the file “main.R” 

(see Appendix A). The code must be run as instructed in the subsequent parts of this 

chapter and general overviews of each line of code in “main.R” will be discussed. Some 

user modifications to the input values are required and these will be noted. Optional 

modifications to user input will not be discussed in this thesis but can be derived from the 

source code (Appendices A-D). Commented lines, denoted by the symbol “#”, are not 

part of the code but may contain helpful user instructions. While the user runs the coarse-

grained MSM analysis in main.R (Appendix A), most of these call functions in 

functions.R (Appendix B) or functions.py (Appendix C). Trajectory-related calculations 

were performed in Python because most trajectory information is handled fairly robustly 

by the Python package “mdtraj”. 

Configuration settings can be found in “config.txt” (Appendix E). Line 1 declares 

the selection to be defined as the ligand using the mdtraj atom selection language, which 

is fundamentally similar to the VMD atom selection language. Edit the text inside the 

quotations, “resname SPR”, to the desired selection. Lines 2-4 declare the type of 

trajectories being used as inputs, the name of the outputted merged trajectory, and the 

merged trajectory’s file type respectively. Edit the text inside the quotations as desired 

but note that the trajectory file types must be supported by mdtraj. Line 5 declares the 

topology file name and should be edited to fit the user’s system. This software was only 

designed to run with PDB topology files, but should also work with any file types 

supported by mdtraj. Line 6 can be set to “TRUE”, without the quotation marks, to also 
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calculate the Root Mean Square Deviation (RMSD) values, the measure of the distance 

between the atoms of each frame, for each atom of the ligand individually. This does not 

impact the RMSD calculation of all ligand heavy atoms combined. Line 7 can be set to 

“FALSE”, without the quotation marks, to not calculate the center of mass. Line 8 does 

not require editing unless the user desires to change the features file’s filename. Lines 9-

10 declare the minimum k value and the maximum k value respectively, for which the k-

means clustering will be run, inclusively. Line 11 can be set to “FALSE”, without the 

quotation marks, to not normalize the data in the features file prior to clustering. Line 12 

declares the reference frame to be used in the RMSD calculations and does not 

necessarily need to be changed. It is recommended from my observations to use a frame 

in which the ligand is positionally centralized. Line 13 declares the number of cores to 

use for the transition matrix calculations and can be left as 1 if the number of cores is 

unknown. Line 14 declares the filename for the finalized cluster file and does not need to 

be changed. 
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Figure 1. Coarse-grained MSM construction flowchart. The flowchart follows sequence 
of numerically listed instructions along the arrows. Instructions with the same number are 
considered to be performed in the same step. The location of the code responsible for 
each task is color coded for functions.R (blue), functions.py (orange), and 
find_unbound_frames.tcl (purple). Output files are labelled in green as numbers 
corresponding to files in the legend. 
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Run line 4 of “main.R” to load some of the created functions that are necessary to 

perform the coarse-grained MSM analysis and continue running the following lines as 

instructed. Line 5 checks to make sure all required R packages have been installed and 

proceeds to install any that are missing. Line 6 loads the package “reticulate” which is 

necessary for interactions with the Python code. Line 7 loads the created Python 

functions that are necessary for the coarse-grained MSM analysis into the R environment. 

Lines 10-11 create the necessary directories and load the configuration file. Move all 

desired MD simulation trajectories into the directory named “trajs”. It is important to note 

that while the software is robust enough to handle trajectories of differing lengths, it is 

still highly recommended and more convenient for the user to use trajectories consisting 

of the same length. Move the topology file into the working directory and confirm that 

the name of the topology file is consistent with the one listed in the configuration file. 

Lines 14-15 will extract the atom indices of the selections specified in the configuration 

file and merge all the trajectories into a single trajectory that will be created in the 

working directory. 

2.3 Clustering & Featurization 

 2.3.1 Clustering theory I. Standard MSM construction typically involves initially 

clustering trajectory data into thousands of individual clusters termed “microstates”. 

Subsequent analysis is then performed on these microstates before they are hierarchically 

lumped into “macrostates”. As there does not exist any experimental evidence indicating 

that these thousands of microstates all actually exist, we chose to directly cluster into 

experimentally verifiable macrostates. This variance in procedure leads to a more coarse-

grained model which trades finer detail for more experimental testability and greater 
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human understanding. The clustering for coarse-grained MSM construction is divided 

into three steps. First, the unbound frames are identified and subsequently removed based 

on the number of atom contacts between the ligand and target molecule. The unbound 

frames must be removed prior to the clustering via k-means because the distribution of 

the unbound frames will likely result in hundreds or thousands of clusters (Figure 2). 

Second, the remaining frames are clustered based on RMSD and optionally center of 

mass via k-means clustering. Lastly, the clustering results are analyzed and validated 

before subsequent merging based on visual expertise. 

 
 
 

 
Figure 2. Distribution of ligand. Top (left) and side (right) views of the distribution of the 
ligand, DBD1, positions over the merged free ligand binding trajectories. The less dense 
outer distributions are indicative of the unbound frames. 
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 2.3.2 Clustering implementation I. Using VMD, load the topology file and the 

merged trajectory file. The file “find_unbound_frames.tcl” (Appendix D) can be loaded 

through the Tk Console in order to output all frames in which there are less than a user-

defined number of atom contacts within a user-defined cutoff between the ligand and 

receptor are to a separate file called “unbound_frames.txt”. Instructions for editing the 

“find_unbound_frames.tcl” script can be found in Appendix D. The script sequentially 

searches through all frames of the merged trajectory and stores a list of all frame numbers 

in which the cutoff was not met. This definition of the unbound frames by cutoff is part 

of what makes this implementation a coarse-grained model, as traditional MSM 

clustering directly clusters all of the trajectory data, including the unbound frames, into 

thousands of “microstates”. 
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Figure 3. Representation of initial clustering. Trajectories are depicted as bars with color 
coding to indicate the trajectory number and unbound frames. 
 
 
 

 2.3.3 Featurization theory. Root mean square deviation (RMSD), in terms of 

MSM analysis, is a measure of the difference between the positions of a selection of 
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atoms in a given frame compared to a reference frame. RMSD is calculated according to 

the equation: 

𝑅𝑀𝑆𝐷 =  
∑ (𝜃 − 𝜃)

𝑁
 

For a given atom, 𝜃 is a coordinate position while 𝜃 is the reference position. Center of 

mass is a measure of the point where the weighted relative position of a distribution of 

mass in space equals zero and is calculated according to the equation: 

𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑀𝑎𝑠𝑠 =  
∑ (𝑥 ∗ 𝑚)

∑ 𝑚
 

For a given atom, x is a coordinate position and m is the mass. 

 2.3.4 Featurization implementation. From this point on, the user will only need 

to run code in main.R. Line 25 is optional and is only necessary if the user wishes to 

change the RMSD reference frame prior to feature calculation. Run line 28 to call a 

function (lines 44-71 of Appendix C) to calculate the RMSD of the ligand heavy atoms 

and possibly also the RMSD of each individual heavy atom of the ligand as well as the 

center of mass of the ligand heavy atoms (lines 73-121 of Appendix C) over all the 

frames of the merged trajectory sequentially based on the user settings in the 

configuration file. Heavy atoms are defined as non-hydrogen atoms. The RMSD 

calculations are performed according to the equation listed in section 2.3.3. Similarly, the 

center of mass calculations for each of the x, y, and z axes are performed according the 

equation for center of mass listed in section 2.3.3. The RMSD and center of mass values 

are outputted in Angstroms. The center of mass calculations can only be performed for 

molecules with heavy atoms consisting of carbon, nitrogen, oxygen, phosphorous, or 
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sulfur atoms. Line 29 combines the feature information obtained in line 28 into a single 

data table. Rows denote the frame number while columns are ordered such that the 

overall ligand RMSD is in the first column followed sequentially by a separate column 

for the individual RMSD values of each of the ligand heavy atoms followed by three 

columns for the x, y, and z coordinates of the center of mass if these options were 

selected in the configuration file. Next, it deletes the rows corresponding to the list of 

frame numbers in the “unbound_frames.txt” file and outputs the remaining data to the file 

under “rmsdfile” in the configuration settings. This step effectively removes all of the 

previously defined unbound frames prior to the actual clustering step and is a major part 

of how this implementation is a coarse-grained model. 

2.3.5 Clustering theory II. It is important to note that this analysis was initially 

designed for usage in analyzing G-quadruplex complexes, but is robust enough to be used 

for the analysis of many biological processes. The clustering used in this coarse-grained 

MSM analysis is k-means clustering. There are several reasons for choosing to use k-

means clustering over the potentially more accurate single-linkage clustering or spectral 

clustering. Firstly, the sample size for the clustering of trajectory frames tends to be in the 

thousands or tens of thousands, which makes single-linkage and spectral clustering highly 

impractical without significant computational resources and hefty hardware. Secondly, 

single-linkage clustering implementations are traditionally run on a single feature while 

the inherently visible shape of many G-quadruplex structures proved indicative that an 

additional set of features, center of mass, would prove to be highly valuable in 

determining how to cluster the data. This can be seen in Figure 2, which shows the 

distribution of the ligand simulated with a G-quadruplex structure over the entirety of the 
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frames. Lastly, a practical test using k-means clustering with the aforementioned features 

resulted in the same number of clusters and approximately similar percent abundance 

values for each cluster as a single-linkage algorithm by GROMACS using only RMSD 

after the results of both clustering algorithms were separately visually merged. 

 
 2.3.6 Clustering implementation II. Line 32 of main.R (Appendix A) will call a 

function (lines 123-142 in Appendix C) to cluster the data in the “rmsdfile”. The data is 

normalized prior to clustering and clustering is performed through a k-means algorithm 

where the user defined a minimum bound for K and a maximum bound for K such that 

clustering will be performed for each K from minimum to maximum inclusively. The 

silhouette indices for each of these cluster iterations is calculated and stored in the 

directory “KMresults” as “KMSIresults.txt”. The results of each cluster iteration are also 

stored in the directory “KMresults” as separate “KMresults#.txt” files, where # is the 

value of K and the data is stored as a single column containing the cluster ID for each 

frame sequentially. Line 33 calls a function (lines 92-109 of Appendix B) to plot the 

silhouette indices in R as a measure of how accurate each clustering iteration was 

compared to the others. Typically, picking the K corresponding to the greatest silhouette 

index will result in a good clustering result. Line 36 requires the user to change the value 

to the K value picked in the previous step. This will allow the rest of the code to know 

which K value to use for subsequent validation and other analyses. 

 2.3.7 Clustering theory III. Clustering rarely produces absolutely perfect results 

for complex datasets; thus, validation and other analyses are required. Firstly, the 

identification of a representative of each cluster can be obtained by finding the frame for 
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each cluster that has an RMSD value nearest the mean RMSD value for that cluster. 

Next, validation of the integrity of each cluster can be obtained by visually observing 

every frame for each cluster and comparing to see if the majority of each cluster is 

similar. Lastly, clusters can be merged based on visual expertise through comparison of 

the representatives for each cluster. This should result in a handful of “macrostates” that 

are mostly experimentally verifiable, unlike the unverifiable thousands of “microstates” 

that are used in traditional MSM analyses. The clustering theory detailed in these three 

clustering theory sections (2.3.1, 2.3.5, 2.3.7) shows why this MSM analysis is 

considered coarse-grained. 

 2.3.8 Clustering implementation III. Line 39 creates a trajectory containing the 

representative frames of each cluster for the previously selected K value. First, the 

representative frame number for each cluster is found via lines 118-199 in functions.R 

(Appendix B). This function (lines 118-199) loads all of the feature data and combines it 

with the cluster data for each frame (lines 119-133). It then adds all the frames that were 

removed as unbound frames back into the dataset and sets the unbound frames as a 

separate cluster (lines 136-162). It then iterates over the dataset to obtain the average 

RMSD value of each cluster (lines 165-179). It iterates again over the dataset while 

comparing the RMSD value of each frame against the mean value of the respective 

cluster to obtain the frame with the least difference from the mean RMSD value for each 

cluster (lines 182-195). Line 42 of main.R calculates the number of frames for each 

cluster. This function (lines 201-215 of Appendix B) iterates over the dataset and counts 

the number of times each cluster appears. The frames per cluster can be shown as a 

percentage or as a raw value based on whether the user declares the “percentage” as 



www.manaraa.com

17 

“TRUE” or “FALSE”. The example given in Appendix A will show the result as a 

percentage. 
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Figure 4. Representation of recombining unbound frames. Note that the unbound frames 
are inserted back into this representation as cluster 0 (this may not necessarily be the case 
for the actual software implementation). 
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Line 45 of main.R creates a trajectory for each cluster that contains all of the 

frames in the respective cluster. First, a function to find the frames that belong to each 

cluster (lines 223-245 of Appendix B) iterates over the dataset checking the cluster 

number and adds the frame number to the end of a list containing all the frames for that 

cluster. Each of these lists are then outputted to files in the directory “cluster_frames” by 

cluster number. Then, a function to create separate trajectories containing all the frames 

for each cluster (lines 163-186 of Appendix C) loads the merged trajectory and then 

subsets the list of frames for each cluster before outputting the trajectory into the 

directory “cluster_frames”. Visual analysis of the representatives and validation 

trajectories can be used to identify the integrity of the clustering results as well as the 

selected K value. If validation identifies that the clustering analysis produced 

significantly inaccurate results, changing the reference frame or the selected K value and 

then repeating the previous steps can improve the integrity of the clusters. After 

validating the clusters, running line 48 in main.R will recombine the unbound frames 

(lines 247-272 in Appendix B) that were previously removed back into the data set as 

cluster 1 (lines 253-270) and renumbering the other clusters to follow while still 

maintaining their identities (lines 248-250). 
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Figure 5. Representation of cluster combination. The actual data transformation (left) and 
a visual example (right) of how to merge the clusters are shown. The command shown in 
blue is line 57 of main.R (Appendix A). The visual example of the clusters depicts the 
receptor as a green crystal-like object in complex with the ligand, a red sphere. 
 
 
 

Line 57 of main.R requires user input to merge similar clusters. This is very 

important as it helps reduce the number of clusters to an experimentally verifiable 

amount and is a major part of what makes this analysis a coarse-grained MSM. User 

input is required in similar syntax as shown in line 57 of Appendix A such that the lowest 
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clusters to be combined are listed first. Detailed instructions are shown in the commented 

lines of Appendix A (lines 51-54). The function (lines 280-317 of Appendix B) iterates 

over the entire dataset multiple times as specified by the user input, searches for values 

matching the user input, and then sets those values equal to the lowest value given in the 

user input for that iteration (lines 282-291). The function then proceeds to clean up the 

values by finding the unique cluster values remaining (lines 294-300), sorting them, and 

then subsequently renumbering the values to increment from 2 onwards while 

maintaining the cluster identities and order (lines 303-313). Line 60 of main.R writes the 

data out to a file “combined_clusters.txt” for further use. Line 63 is an optional line that 

obtains the frames per cluster, representatives, and validation trajectories for the 

combined clusters. The theory and implementation remain the same and only the data has 

changed. 

2.3.9 Transition path theory. Count matrices are created for specified lagtimes 

(τ), increasing in magnitude, by counting the number of observed transitions between 

discrete states such that the count of transitions from state i to state j (cij) is the sum of the 

number of times each of the trajectories were observed in state i at time t and in state j at 

time 𝑡 +  𝜏, for all 𝑡 ≤ 𝑡 −  𝜏 (Prinz et al., 2011). The count matrices were 

symmetrized (symij) such that:  

𝑠𝑦𝑚 = 𝑠𝑦𝑚 =
𝑐 + 𝑐

2
 

and then row-normalized (normij) such that: 

𝑛𝑜𝑟𝑚 =
𝑠𝑦𝑚

∑ 𝑠𝑦𝑚
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For the purpose of determining the lag time at which the model has converged, an 

implied timescale of each cluster is calculated according to the equation: 

𝜏 =  −
𝜏

ln 𝛍 (𝜏)
 

in which μk is an eigenvalue of the transition matrix, for all specified lagtimes and 

plotted. The implied timescale of the first cluster is not included in the plot as the 

eigenvalue is always 1 and thus contributes no information (Noé, Horenko, Schütte, & 

Smith, 2007). Further validation that the model had converged was performed through 

the Chapman-Kolmogorov (CK) test using the equation: 

𝑃 (𝑛𝜏) = [𝑃 (𝜏)]  

in which P is the transition probability at a specific time, n is a constant, 𝜏 is the lagtime. 

Thereafter, the mean first passage times (Fif ) at a specified optimal lag time, found via 

the implied timescales and Chapman-Kolmogorov test, can be calculated according to the 

formula: 

𝐹 =  𝜏 +  𝑃 𝐹  

with the boundary condition 𝐹 = 0, where τ is the lag time used to construct the 

transition matrix P(τ). Standard deviations can be obtained by performing the same mean 

first passage time calculations on a range of values near the optimal lag time. A network 

model can then be generated based on the count matrix at the optimal lag time with a 

cutoff of a desired number of transitions. 

 2.3.10 Transition path theory implementation. Line 68 of main.R (Appendix 

A) is an optional line used to declare a series of lagtimes for the subsequent steps. The 

software has already generated a default series of lagtimes, incrementing by 1 from 1 to 
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the length of the shortest MD trajectory prior to merging, in a previous step. However, 

the user can opt to set a larger increment thereby saving some time and detailed 

instructions for how to declare line 68 are shown in lines 66-67. Typically, it is necessary 

at minimum to set a series such that it includes 1, and steps by 10 from 10 to the length of 

the shortest MD trajectory rounded to the nearest 10. The example shown in Appendix A 

denotes a series of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, … 490, 500. Line 70 

calculates the transition matrices according to the equations mentioned in section 2.3.9 

and outputs the counted, symmetric, and normalized matrices into corresponding text 

files in the TPT directory. The functions (lines 353-386 and 388-434 of Appendix B) 

responsible for this use a parallel processing technique to heavily speed up the overall 

calculations based on the value set in line 13 of the configuration file. Lines 362-371 are 

performed for each lagtime in the series and iterate over the entire dataset while counting 

the number of observed transitions from i to j as detailed in section 2.3.9 for each 

individual trajectory prior to the merging. Lines 374-383 perform the same actions as 

lines 362-371 but are only used instead of lines 362-371 when the original input 

trajectories consist only of a single trajectory. 

 Line 73 of main.R (Appendix A) creates a plot of the implied timescales, an 

example is shown in Figure 6, for the previously declared lagtimes using the matrices 

calculated in the previous step. The implied timescales function can be found in lines 

436-500 of Appendix B and calculates the implied timescales according to the equation 

listed in section 2.3.9. The function uses singular value decomposition for the calculation 

of the eigenvalues as the matrices used in MSM analyses fulfill the conditions such that 

values obtained by singular value decomposition will be equal to that of eigen 
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decomposition. The user can choose to use the eigen solver to calculate the eigenvalues 

by setting the variable f to any string other than “svd”. This is not recommended, 

however, as the eigen solver in R often has many issues when solving certain matrices. 

Lines 439-475 calculate the eigenvalues for each state at each of the previously specified 

lagtimes and stores the data in a matrix for further use. Lines 477-482 are responsible for 

performing the mathematical equation used for calculating implied time detailed in 

section 2.3.9 and then preprocessing the data for plotting. Lines 484-499 are responsible 

for the automated creation of a customized plot that shows the implied timescales with 

color coded states and optional logarithmic axis representations. Lines 76-77 of main.R 

are optional but recommended lines that can be used to refine the implied timescales plot 

for use in generating a good figure for use in publications. Line 76 is very similar to line 

68 and is used to redefine the lagtimes in order to remove any lagtimes where the 

matrices may prove unreliable. These lagtimes are typically closer towards the maximum 

lagtime value as there is significantly less data to work with when generating the count 

matrices. Line 77 adds an option, log_y, to the implied timescales function that is set to 

TRUE by default to show a logarithmic y-axis which is often more useful when looking 

at implied time, but provides less information on finding unreliable data. 
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Figure 6. Plot of the implied timescales. States 2, 3, and 4 (side, top and bottom binding 
respectively) are shown. The lines have stabilized and all three bound states are 
converged by roughly 250 ns. Timescales are only shown up until 750 ns as the transition 
matrices after that are significantly less reliable. 
 
 
 

Line 81 of main.R calls a function (lines 502-627 of Appendix B) that is 

responsible for creating the plot of the CK test. An example of the CK test is shown in 

Figure 7. User input is required for the option x and it must be set a value in the series of 

lagtimes declared in line 68. It is typically recommended to pick a value that has a large 

number of divisors and thus values that are multiples of 100 are highly recommended. 

Choosing a value that is not a multiple of 100 may lead to inaccuracies, insufficiencies, 

or legend errors when viewing the plot. User input is also required for the option cluster 

and it will affect which cluster the CK test is performed on. The recommended values for 

cluster are either the number of the most abundant cluster that is not unbound or the 

number of the unbound cluster if it is the most abundant. There are several optional 
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variables that the user can choose to declare: final, steps, user_base_lagtimes, 

base_lagtimes, useBasin, and basin. These values are respectively used to cut off 

unreliable data, declare step size, declare whether or not the user intends to declare their 

own base lagtimes, the series of base lagtimes the user wants to use, declare whether or 

not to use basins instead of clusters, and the basin the user wants to use. It is not 

recommended to change the optional values, other than final, unless the user has an 

advanced understanding of the code used in lines 502-627 of Appendix B. Final can be 

changed to any value less than the value set for x so as to set the maximum value of the 

x-axis. Lines 506-534 are responsible for preprocessing and calculating the base lagtimes 

if the user did not declare any. Lines 535-551 are responsible for performing the 

Chapman-Kolmogorov equations detailed in section 2.3.9 on each of the matrices from 

the base lagtimes and storing the data. Lines 552-626 are responsible for preparing the 

data for plotting and the subsequent plotting of the CK test results. 
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Figure 7. Plot of Chapman-Kolmogorov test. Shows the probability for Basin 11. Basin 
11 is indicative of the probability that the simulation will remain in cluster 3, the most 
stable state (top binding mode). Each line denotes the approximation of a model for that 
given lag time. The line for 0 ns is the actual simulation data. As the line for 0 ns falls 
between the lines from 180 ns and 450 ns, it is clear that the model closely approximates 
the simulation between lag times of 180 ns and 450 ns. 
 
 
 
 The plots of the implied timescales and CK test should be interpreted together. 

The implied timescales plot allows the user to find an approximation of an optimal 

lagtime at which the system has reached equilibrium. This is defined by an area at which 

all states have begun to either plateau or oscillate between near constant boundaries and 

can be seen in Figure 6. The CK test allows the user to validate that the model is a 

sufficient representation of the actual data. This can be confirmed by noting which lines 

the line for lagtime 0, which represents the raw trajectory data, falls between and can be 

seen in Figure 7. The lines which the line for the raw trajectory is consistently between 

represents the minimum (lower line) that the optimal lagtime can be and an upper bound 
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showing that the system has sufficiently relaxed. If the line for the raw trajectory does not 

fall between at least two lines, then either the user is using the wrong cluster for the CK 

test or the model is not sufficiently representative of the data. 

 Line 83 of main.R (Appendix A) requires user input to set the option 

optimal_lagtime to the value of the optimal lagtime obtained from the implied timescales 

and CK test. The function (629-700 of Appendix B) then proceeds to calculate the mean 

first-passage times for the given lagtime according to the equation listed in section 2.3.9. 

Lines 632-681 consist of a complex algorithm that automatically builds the system of 

equations necessary for the mean first-passage time calculations regardless of the number 

of states. Lines 683-699 are responsible of solving the system of equations, storing the 

results for further use, and returning the results to the user. Line 84 of main.R calls a 

function (lines 708-729 of Appendix B) to calculate a standard deviation for the mean 

first-passage times and requires the user to input 3 numbers such that the first is a lower 

bound, the second is an upper bound, and the third is the step size. In the example shown 

in Appendix A, this calculates the standard deviations between lagtimes of 200, 210, 220, 

230, 240, 250, 260, 270, 280, 290, and 300. It is recommended that the user use two 

equidistant values from the optimal lagtime with a step size of 10. 

 Line 85 of main.R calls a function (lines 731-774 of Appendix B) to generate a 

network model for a given lagtime. The user must set the lagtime equal to the optimal 

lagtime, declare a cutoff for the minimum number of transitions necessary to show an 

edge, and optionally declare a seed that affects only the graphical representation of the 

model. The cutoff is typically recommended to be set as 1 so that all observed transitions 

are shown while the seed does not matter except to get the same graphical representation 
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for the same seed. The network model is built using the R package igraph and represents 

each state as a node (circle) and the transitions as edges (lines). The edges are labelled 

with the number of transitions observed from a source state to a sink state. These labels 

are color coded such that the color of the label matches the color of the source node. An 

example of a network model is shown in Figure 8. Lastly, line 87 of main.R calls a 

function (lines 776-788 of Appendix B) to output the results of the mean first-passage 

time calculations to a text file containing a matrix such that the values are the mean first-

passage times, the row number is the source state and the column number is a sink state. 

There are two optional values for the user to declare: divisor is the number by which to 

divide the mean first-passage time values if the user desires to convert units and decimals 

is the number of decimal places to which the values should be rounded. The data is 

outputted to a file called “final_mfpt.txt”. This concludes the coarse-grained MSM 

analysis. 
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Figure 8. Network model. Shows the transitions between the (1) unbound, (2) side, (3) 
top, and (4) bottom states. Edge labels indicate the number of observed transitions and 
are color coded such that the color of the label matches the source of an outgoing 
transition. 
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Chapter 3 

Coarse-grained MSM Analysis of G-quadruplex Systems 

3.1 Chapter Overview 

Chapter 3 serves as a demonstration of the real application of the coarse-grained 

MSM analysis for a ligand binding to a G-quadruplex. The following are several slightly 

modified excerpts from a soon-to-be submitted manuscript that was developed from an 

older version of the coarse-grained MSM software (Chen, Fountain, Sullivan, Paradis, & 

Wu, 2020). The final section of chapter 3 will also include several sets of results obtained 

from performing the coarse-grained MSM analysis (Mulholland et al., 2020; Sullivan, 

Chen, & Wu, 2020). 

3.2 Introduction 

A G-quadruplex consists of four guanine base pairs (G-tetrads) stabilized by 

Hoogsteen hydrogen binding and pi-pi stacking interactions (Suntharalingam, White, & 

Vilar, 2009). The G-tetrads form a planar arrangement within the structure and are further 

stabilized by the presence of monovalent cations, such as K+ and Na+ ions, interacting 

with guanine O6 carbonyl groups (Hsu et al., 2009). G-quadruplexes have been found in 

the promoter regions of numerous genes, including various oncogenes such as MYC, c-

KIT, VEGF, and KRAS (Agarwal et al., 2011; Agrawal, Hatzakis, Guo, Carver, & Yang, 

2013; Harikrishna, Kotaru, & Pradeepkumar, 2017). Investigations of new quadruplex-

binding ligands that can stabilize the quadruplex structure have gained interest over the 

past two decades (Phan, Modi, & Patel, 2004; Ruggiero & Richter, 2018). Ligand 

binding-induced stabilization of the promoter G-quadruplex is being explored as a cancer 
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therapy because of its ability to downregulate oncogene expression (Ambrus, Chen, Dai, 

Jones, & Yang, 2005; Neidle, 2016; Tawani, Mishra, & Kumar, 2017). 

Overexpression of the MYC oncogene has gained a lot of attention due to its 

common genetic aberrations found in various types of human cancer cells, including 

breast (Watson, Safneck, Le, Dubik, & Shiu, 1993), prostate (Hawksworth et al., 2010), 

lung (Rapp et al., 2009), cervical (J Wu, 1996), colon (Smith, Myint, & Goh, 1993), 

small-cell lung cancer (Barr et al., 2000), and lymphoma (Kim, Evans, Dubins, & 

Chalikian, 2011; Magrath, 1990). The MYC gene encodes transcription factors, which 

regulate gene expression in many important biological processes such as cell growth, 

apoptosis and proliferation (Boddupally et al., 2012). Within the MYC promoter region, 

an important element, termed nuclease-hypersensitivity element III1 (NHE III1), is 

required for 80-95% of MYC transcription (Cooney, Czernuszewicz, Postel, Flint, & 

Hogan, 1988; T. L. Davis, Firulli, & Kinniburgh, 1989; Mathad, Hatzakis, Dai, & Yang, 

2011). Pu27, the major purine rich strand of NHE III1, (Ambrus et al., 2005; Chung, 

Heddi, Hamon, Teulade-Fichou, & Phan, 2014; J. T. Davis, 2004) forms G-quadruplex 

structure and ligand-binding induced stabilization of the MYC G-quadruplex has been 

shown to downregulate MYC expression as a cancer therapy (Ambrus et al., 2005; 

Tawani et al., 2017). In one study, suppression of MYC expression was observed when a 

Burkitt’s lymphoma cell line was treated with TMPyP4, which stabilized the G-

quadruplex (Tawani et al., 2017). Two other studies have also shown that quindoline 

derivatives stabilize the MYC G-quadruplex and reduce expression of MYC in cancer 

cells (Che et al., 2018; Deng et al., 2017). Therefore, the use of small molecules to 
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stabilize the MYC G-quadruplex and consequently decrease MYC expression is an 

attractive anti-cancer therapeutic approach. 

In an attempt to identify a new class of MYC G-quadruplex stabilizing ligands, 

Felsenstein et al. employed a small molecule microarray to screen 20,000 compounds 

from ChemBridge and ChemDiv repositories (Felsenstein et al., 2011), which yielded 

compound 1 (ChemDiv No. D089-0563), a crescent-shaped structure containing a G-

quadruplex binding disubstituted benzofuran scaffold (hereafter referred as DBD1). 

Measurement of the binding affinity of DBD1 by surface plasmon resonance gave a Kd 

value of 4.5 ± 1.4 μM, which is sufficient to elicit a biological response (Neidle, 2016). 

DBD1, a G-quadruplex stabilizing ligand, also exhibited the ability to selectively inhibit 

MYC gene expression through stabilization of Pu27 in the MYC promoter region and 

induced apoptosis in cancer cell lines while having minimal toxicity on normal peripheral 

blood mononucleocytes (Neidle, 2016; Pany, Bommisetti, Diveshkumar, & 

Pradeepkumar, 2016). Although the high-resolution complex structure of DBD1 with the 

MYC G-quadruplex of Pu27 has not been obtained due to the polymorphic structure of 

Pu27, the NMR structure of a derivative, Pu24, (PDB: 2MGN) in complex with a 

different ligand has been solved.  
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Figure 9. Structure of DBD1 and Pu24. Side view (A) and cartoon representation (B) of 
the Pu24 G-quadruplex (PDB ID: 2MGN) and the 2D structure of DBD1 (C). The G-
tetrads are highlighted in red, green and cyan. The 5’ and 3’ ends are represented by red 
and blue spheres, respectively. K+ cations are represented by yellow balls. The planar 
core region of the DBD1 structure is shown by a black box. 
 
 
 

In this study, we employed extensive free ligand binding MD simulations to probe 

the binding of DBD1 to a MYC G-quadruplex derivative, Pu24 (PDB: 2MGN). 

Subsequent k-means clustering analysis of the MD simulation data were evaluated for 

determining the major binding modes. Molecular Modeling Poisson-Boltzmann Surface 

Area (MM-PBSA) analysis was evaluated for determining the energetics of the major 

binding modes. MSM analysis is performed to examine the binding pathway and kinetic 

rate information. Order parameters are calculated for representative trajectories. 

3.3 Methods 

3.3.1 MD simulation systems. A total of three systems were constructed: one 

ligand-only system, one DNA-only system, and one unbound DNA-ligand system. Each 

system was solvated in a water box of truncated octahedron with 10 Å water buffer plus 

Cl- or K+ as counter ions to neutralize the system and 0.1 M KCl. A refined OL15 version 

C A B 
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of the AMBER nucleic acid force including corrections of several backbone torsion angle 

parameters (i.e. parm99bsc0 + χOL4 + ε/ζOL1 + βOL1) was applied to represent the DNA 

fragment. The TIP3P water model was used to represent water molecules, and the K+ 

model developed by Cheatham group was used to represent the K+ ions (Joung & 

Cheatham, 2008). The force field for DBD1 ligand was obtained using standard AMBER 

protocol: the molecular electrostatic potential (MEP) of DBD1 was calculated at the 

HF/6-31G* level after its geometry optimization at the same theory level; then MEP was 

used to determine the partial charges of DBD1 atoms using Restrained Electrostatic 

Potential/RESP method with two stage fitting; and other force field parameters were 

taken from the AMBER GAFF2 force field. 

The simulations for each system were run using the AMBER 16 simulation 

package. The simulation protocols followed our early studies which are briefly described 

here. The starting points of the MD simulations for DBD1 to the G-quadruplex involved 

two different initial starting unbound points, top and bottom, with a separation of ~15 Å. 

Each unbound DNA-ligand system underwent an additional 1000 ps pre-run at 500 K to 

ensure that the position and orientation of the free ligand were randomized before a 

production run at 300 K; during this pre-run, the receptors position remained fixed. 

Thirty-three independent runs at 300 K were carried out using random initial velocities. A 

run at 300 K, included a short 1.0 ns molecular dynamics in the NPT ensemble mode 

(constant pressure and temperature) to equilibrate the system density and production 

dynamics in the equivalent NVT ensemble mode (constant volume and temperature). 

SHAKE was applied to constrain all bonds connecting hydrogen atoms, enabling a 2.0 fs 

time step in the simulations. The particle-mesh Ewald method was used to treat long-
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range electrostatic interactions under periodic boundary conditions (charge grid spacing 

of ~1.0 Å, the fourth order of the B-spline charge interpolation; and direct sum tolerance 

of 10–5). The cut off distance for short-range non-bonded interactions was 10 Å, with the 

long-range van der Waals interactions based on a uniform density approximation. To 

reduce the computation, non-bonded forces were calculated using a two-stage RESPA 

approach where the short range forces were updated every step and the long range forces 

were updated every two steps. Temperature was controlled using the Langevin thermostat 

with a coupling constant of 2.0 ps. The trajectories were saved at 50.0 ps intervals for 

analysis. 

3.3.2 Coarse-grained MSM analysis. 33 trajectories (1000 ns each) of the DNA-

ligand system were combined into one trajectory. Using VMD, all frames in which there 

were less than 13 atom contacts, at a distance less than 3Å, between the G-quadruplex and 

the ligand were separated as the unbound state (Humphrey, Dalke, & Schulten, 1996). The 

trajectory was then superimposed based on the nucleic backbone using MDtraj and 

calculations for RMSD as well as center of mass of the ligand heavy atoms were performed 

(McGibbon et al., 2015). k-means clustering, performed using scikit-learn, was then used 

to classify the remaining frames into various states (Pedregosa et al., 2011). Clustering was 

performed for k between 2 and 30 inclusively, using the silhouette index as the metric for 

similarity of clusters (Pedregosa et al., 2011; Rousseeuw, 1987). It was determined that 

k=4 had the greatest silhouette index and the most representative frame for each cluster 

was determined by calculating the mean RMSD for each cluster and finding the frame with 

the least difference from the mean. Further validation of the clustering was performed by 

creating a trajectory for each of the clusters containing all of the frames in each cluster and 
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visually confirming the similarity within each cluster. Through visual analysis of the cluster 

representative frames, two clusters were determined to be highly similar and were thus 

combined. The unbound frames were then reintroduced as a single cluster resulting in a 

total of four clusters, observed to be top binding pose, side binding pose, bottom binding 

pose, and unbound. 

Count matrices were then created for lagtimes (τ) of 1, 10, 20, 30 … 1000 ns by 

counting the number of observed transitions between discrete states such that the count of 

transitions from state i to state j (cij) is the sum of the number of times each of the 

trajectories were observed in state i at time t and in state j at time 𝑡 +  𝜏, for all 𝑡 ≤

𝑡 −  𝜏 (Prinz et al., 2011). The count matrices were symmetrized (symij) such that 

𝑠𝑦𝑚 = 𝑠𝑦𝑚 =  and then row-normalized (normij) such that 𝑛𝑜𝑟𝑚 =

∑
. For the purpose of determining the lag time at which the model has converged, 

the implied timescale of each cluster was calculated for all lagtimes and plotted (Figure 

6). The implied timescale of the first cluster is not included in the plot as the eigenvalue 

is always 1 and thus contributes no information (Noé et al., 2007). Further validation that 

the model had been converged was performed through the Chapman-Kolmogorov test 

(Figure 7) (Prinz et al., 2011). A network model (Figure 8) was then generated based on 

the count matrix at a lag time of 250 ns with the cutoff for a directed edge in the network 

being set at 300 transitions (Csardi & Nepusz, 2006). Thereafter, the mean first passage 

times (Fif ) at a lag time of 250 ns and the standard deviations from lag time 250 ns to 750 

ns were calculated according to the formula 
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 𝐹 =  𝜏 +  ∑ 𝑃 𝐹 , with the boundary condition 𝐹 = 0, where τ is the lag time 

used to construct the transition matrix P(τ). 

3.4 Results 

The distribution of DBD1 over the course of all 33 binding simulations, represented 

by a single atom, was calculated. From the top view and side view, almost every surface 

of the DNA G-quadruplex was sampled by the ligand, suggesting that a good position 

sampling has been achieved by our simulation protocol. The Root Mean Square Deviations 

(RMSD) of both the DNA backbone and ligand were calculated for all the runs of the free 

ligand binding simulations. Atom contacts between the DNA structure and the drug 

molecule were calculated using an atom-to-atom distance cutoff of 3.0 Å. The flat RMSDs 

and atom contacts after 250 ns were observed in the most of trajectories, indicating the 

convergence of the binding simulations. The last snapshots can be found in Appendix F 

and of the 33 trajectories, final binding poses at 1001 ns were 23 top binding, 6 bottom 

binding, and 4 side binding.  

3.4.1 Clustering. Clustering analysis was performed as discussed in the methods 

section in order to identify three major binding modes (top stacking, groove binding, and 

bottom stacking). The first cluster, the most abundant, is a top binding pose that consists 

of 55.9% of the simulation. DBD1, resting above the first G-tetrad layer (G4, G8, G13, 

G17), exhibits intercalation at the 5’-end of the G-quadruplex. The second cluster is a 

side binding pose that consists of 15.6% of the simulation and only exhibits minor 

intercalation between A21 and G23. The third cluster, consisting of 12.1% of the 

simulation, is a bottom binding pose. Altogether, they encompassed 83.6% of all the 

trajectories. The remainder of the simulation consisted of the unbound state. 
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Figure 10. Clustering results. Representative structure of populated bound clusters from 
the k-means clustering analysis. The three G-tetrad layers in the G-quadruplex are in red, 
green, and light blue for the top, middle and bottom layers, respectively. The ligand 
(DBD1) is in orange and K+ cations are represented by yellow balls. The unbound cluster 
was not shown (16.4%). 
 
 
 

3.4.2 MM-PBSA. MM-PBSA binding energy calculations were conducted for the 

three ligand binding modes in order to determine the relative stability of the three major 

binding modes. The binding energy calculations indicated that the most energetically 

favorable binding pose was the top binding mode (-42.9 ± 4.5 kcal/mol) followed by both 

the bottom (-16.9 ± 1.8 kcal/mol) and side (-16.9 ± 2.6 kcal/mol) binding modes which 

had similar binding energies. van der Waals forces play a major role in the stability of the 

binding of DBD1 to Pu24 as can be seen when comparing the van der Waals forces of the 
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top binding mode (-52.0 ± 0.3 kcal/mol) to that of the bottom (-14.7 ± 1.0 kcal/mol) or 

side (-14.3 ± 0.5 kcal/mol) binding modes. The change in binding energy (ΔΔETOT) 

between the top binding mode and the other two binding modes is less than the difference 

in van der Waals energy, indicating that the van der Waals interactions make up the 

majority of the total MM-PBSA binding energy for all three binding poses. We see that 

the difference in PBTOT, PB solvation and gas phase energy, also plays a lesser but non-

negligible role in the difference between the binding energies of top (-25.9 ± 0.4 

kcal/mol), bottom (-4.5 ± 0.8 kcal/mol), and side (-4.5 ± 0.5 kcal/mol) binding modes. 

 
 
 
 
Table 1 

MM-PBSA binding energies. 

Binding energies (kcal/mol) of DBD1 in the Top, Bottom, and Side binding modes.  

Position ΔEVDW
a ΔESUR

b ΔEPBELE
c ΔEPBTOT

d ΔConfe  ΔETOT
f ΔΔETOT

g 

Top -52.0±0.3 20.3±0.3 5.9±0.4 -25.9±0.4 -16.9±4.6 -42.9±4.5 0 

Bottom -14.7±1.0 8.3± 1.2 1.9±1.0 -4.5.±0.8 -12.4±1.9 -16.9±1.8 26.0 

Side -14.3±0.5 8.4±1.9 1.4±0.2 -4.5±0.5 -12.4±2.7 -16.9±2.6 26.0 

a Gas phase van der Waals energy (VDW) 
b Nonpolar solvation (SUR=PBSUR+PBDIS)  
c Solvation and gas phase electrostatic energy (PBELE=PBCAL + ELE) 
d PB Solvation and gas phase energy (PBTOT=VDW+SUR+PBELE) 
e Conformation energy change upon complex formation (Conf) 
f Total binding energy in water (PBTOT + Conf) 
g Relative binding energy 
 
 
 

3.4.3 MSM results. The clustering identified four macrostates (unbound, top, 

side, and bottom binding) and MSM analysis was performed on those states using 

transition path theory as mentioned in the methods section to obtain binding pathway 
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information. Identification and verification of the optimal lagtime were performed using 

the implied timescales and Chapman-Kolmogorov test as discussed in the methods 

section (Figures 6-7). A network model with the optimal lagtime (250 ns) was presented 

with the transition counts (Figure 8): the approximate ratios of the interstate fluxes were 

1:3 for unbound to top binding, 4:3 for unbound to side binding, 1:1 for unbound to 

bottom binding, 1:3 for side binding to top binding, and 1:2 for bottom binding to side 

binding. To simplify interpretation, the mean first passage time between each of the two 

connected states, connections being defined as any two states that had at least 1 

transition, was calculated. The transitioning of the other states towards the top binding 

mode, the most thermodynamically stable state, was analyzed and presented in a 

reorganized MSM of DBD1 binding to the Pu24 G-quadruplex (Figure 11). Figure 11 

shows organization of the states from top to bottom begins with unbound on top and then 

from least abundant to most abundant (abundance is displayed in parentheses). Overall 

transition times for each given path are organized from fastest (left) to slowest (right). It 

can be clearly seen that the transition from the unbound state directly to the final binding 

pose is the fastest while transitions involving transition states are significantly slower. 

Transition to the bottom transition pose requires transition to the side transition pose in 

order to reach the final binding pose. Interestingly, three distinct binding pathways to the 

most stable binding mode (top binding) were obtained. The first major binding pathway 

was the direct transition from unbound to the final top binding state. The second and third 

binding pathways involve additional transitions through the side binding transition state 

and both the bottom binding transition state and the side binding transition state 

respectively. We can see from our results that the ligand has multiple pathways, some 
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more favored than others, to reach the final binding pose and these pathways are 

observable in the original trajectories, further supporting our results. 

 
 
 

 

Figure 11. MSM of DBD1/Pu24 complex. The top row consists of representative 
structures of the unbound state. The middle row consists of the two intermediate states, 
side and bottom. The bottom row consists of DBD1 binding to the top site of the G-
quadruplex. The mean first passage times between the four states (unbound, bottom, side, 
and top) are annotated in the same color as the arrow directing the transition. DBD1 and 
the Pu24TT G-quadruplex are colored black and blue/cyan respectively.  
 

3.4.4 Simulation results. The 33 simulated trajectories can be further classified 

into different binding pathways. First, there are 16 trajectories that exhibit the transition 

shown from unbound directly to the top binding state (Appendix G). Second, nine 
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trajectories show the ligand going from the unbound state to the side transition state to 

the final top binding state (Appendix G). Third, three trajectories indicate a transition 

from either top or bottom to the side binding state (Appendix G). Fourth, there are two 

trajectories that indicate the transition from unbound to bottom, which combined with the 

aforementioned transitions shows the possibility of an unbound to bottom to side to top 

transition if the trajectories were to be extended (Appendix G). Fifth, some of the reverse 

pathways can be observed such as 3 trajectories exhibiting the transition from side back 

to bottom binding (Appendix G). Clearly, these observed pathways support our MSM 

(Figure 11). 

A representative trajectory for the first three pathways was chosen for further 

characterization using some order parameters (Figures 12-14). We measured hydrogen 

bonds, center-to-center distance (D), drug-base dihedral angle, receptor and ligand 

RMSD and MM-PBSA binding energy (ΔE). The top stacking mode was the most 

energetically favorable and stable structure according to the RMSD and MM-PBSA 

binding energy. 
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Figure 12. Order parameters of top binding representative trajectory. Results are 
calculated from a representative trajectory of the primary binding pathway of DBD1 to 
the top position of the G-quadruplex. Top-bottom: Representative structures with time 
annotation. 5’ and 3’ are indicated by a red and blue ball, respectively. K+ ions are 
represented in yellow. Hydrogen bonds in the first (red), second (green), third (blue) G-
tetrad and fourth (black) of G-triad layer of quadruplex (H-bond), drug-base dihedral 
angle, ligand RMSD, center-to-center distance (R/black) and K+-K+ distance (R/red) and 
MM-PBSA binding energy (ΔE). 
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Figure 12 shows unbound DBD nearly reaching the top binding position at 138 ns 

and transitioning fully into this position by 652 ns. Hydrogen bonding remains relatively 

stable throughout the simulation with about 10, 9, 6, and 3 hydrogen bonds in the first, 

second, third G-tetrad, and fourth triad layers of the G-quadruplex, respectively, 

suggesting little change in the G-quadruplex scaffold. The drug-base dihedral begins at 

~80 degrees, decreases to ~40 degrees at 200 ns, and stabilizes at 20 degrees at 650 ns 

and throughout the remaining simulation. This highlights DBD1’s intercalation between 

the top G-tetrad layer and the 5’-end loop. The DBD1 ligand RMSD stabilizes at ~20 Å 

by 150 ns and remains stable throughout the simulation. Center-to-center potassium ion 

distancing between the ligand and the G-quadruplex stabilizes by 100 ns and the 

potassium ions distances remains stable throughout the simulation. MM-PBSA binding 

energy stabilizes at approximately -25 kcal/mol by 650 ns after DBD1 reaches the top 

binding site. 
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Figure 13. Order parameters of side to top representative trajectory. Results are 
calculated from a representative trajectory of the primary binding pathway of DBD1 to 
the top position of the G-quadruplex. Top-bottom: Representative structures with time 
annotation. 5’ and 3’ are indicated by a red and blue ball, respectively. K+ ions are 
represented in yellow. Hydrogen bonds in the first (red), second (green), third (blue) and 
last (black) of G-tetrad layer of quadruplex (H-bond), drug-base dihedral angle, ligand 
RMSD, center-to-center distance (R/black) and K+-K+ distance (R/red) and MM-PBSA 
binding energy (ΔE). 
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Figure 13 shows unbound DBD1 that transitions to the side-binding site by 303 ns 

and to another side-binding site at 503 ns before transitioning to the top-binding position 

at 725 ns. The hydrogen binding analysis here shows little change in the G-quadruplex 

scaffold, as in Figure 12. The dihedral angle initially averages 80 degrees, decreases to 

~20 degrees at 300ns, increases again to ~80 degrees between 300 ns and 650 ns and 

stabilizes at 10 degrees at 650 ns and throughout the remaining simulation. The DBD1 

RMSD begins at 15 Å, increases sharply to ~30 Å at 100 ns, decreases slowly until 500 

ns before spiking to ~30 Å again and then stabilizes with less fluctuation at 650 ns until 

the end of the simulation. Center-to-center distance stabilizes by 650 ns, while the 

distance between the two K+ ions remains stable for the entire simulation. MM-PBSA 

energy stabilizes at approximately -25 kcal/mol by 650 ns when the ligand has reached 

the stable top binding position. 
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Figure 14. Order parameters of bottom to side representative trajectory. Results are 
calculated from a representative trajectory of the primary binding pathway of DBD1 to 
the top position of the G-quadruplex. Top-bottom: Representative structures with time 
annotation. 5’ and 3’ are indicated by a red and blue ball, respectively. K+ ions are 
represented in yellow. Hydrogen bonds in the first (red), second (green), third (blue) and 
last (black) of G-tetrad layer of quadruplex (H-bond), drug-base dihedral angle, ligand 
RMSD, center-to-center distance (R/black) and K+-K+ distance (R/red) and MM-PBSA 
binding energy (ΔE). 
 
 
 

Figure 14 shows unbound DBD1 before it reaches the bottom-binding position at 

191 ns and transitioning to the side-binding position at 800 ns. The hydrogen binding 
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analysis here shows little change in the G-quadruplex scaffold, as seen in Figures 12 and 

13. The dihedral angle initially averages ~30 degrees, increasing and stabilizing to ~70 

degrees at 450 ns throughout the remaining simulation. The DBD1 RMSD starts at 15 Å 

before increasing sharply to 30 Å at 450 ns and stabilizes for the remaining simulation. 

Center-to-center distance is stable throughout the entire simulation except for a small 

fluctuation at ~450 ns, while the distance between the two potassium ions remains stable 

throughout the simulation. MM-PBSA energy fluctuates between 0 kcal/mol and -10 

kcal/mol for the entire simulation. 

Trends in Figures 12-14 showed a lack of change in H-bonding within the G-

quadruplex structure scaffolding; the G-quadruplex structure conformations were not 

significantly altered by ligand-binding. The center-to-center potassium ion distancing in 

the G-quadruplexes stays relatively stable in all three simulations, suggesting that the 

core structures do not undergo significant conformational change. The nucleotide 

sequence (T10G11A12) underwent noticeable conformational changes in all three systems, 

where base flipping was apparent in the (T10G11A12) sequence. The top-binding position 

in all three trajectories has a lower dihedral angle and binding energy after DBD1 

intercalates between the 5’-loop and the top G-tetrad layer; this suggests that DBD1 has 

geometric-favorability within the top-binding site, resting just above the first G-tetrad 

layer. The top binding position exhibits planarity with the G-quadruplex scaffold, which 

is not seen in either the bottom- or side-binding positions. This planarity allows DBD1 to 

intercalate here, serving an important factor in determining the most stable binding 

position. Our findings suggest that the most favorable binding position is top-stacking 
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while the intermediate positions, side and bottom ultimately transition to the top-binding 

position of the G-quadruplex. 

The pathway from the unbound state directly to the final (top) binding state is indicative 

of the induced fit theory while the other two pathways that selectively bind to the side or 

the bottom pockets suggest that the system follows the conformational selection theory. 

We can see from the observed transitions that the number of transitions for both the 

induced fit and conformational selection pathways are relatively similar in abundance, 

thus we propose that the binding of DBD1 to 2MGN is a mixture of the two binding 

theories. 

3.5 Discussion 

Our clustering and MM-PBSA analyses suggest that the most favorable binding 

state is top stacking while the intermediate states, side and bottom, shift towards the top 

binding position of the G-quadruplex. This coincides with several other studies that show 

the top binding mode being the most energetically favorable for certain G-quadruplex 

systems (Machireddy, Sullivan, & Wu, 2019; Shen, Mulholland, Zheng, & Wu, 2017). 

The lesser energetic favorability exhibited by the side and bottom binding poses suggests 

that they are intermediate states. The side binding pose is not experimentally observed in 

either the 2MGN or 5W77 structure but has been observed in duplex structures 

(Machireddy et al., 2019). Major contributors to the binding energy were van der Waals 

forces, which had -52.0 ± 0.3 kcal/mol for the top binding mode, -14.7 ± 1.0 kcal/mol for 

the bottom binding mode, and -14.3 ± 0.5 kcal/mol for the side binding mode, and 

PBTOT, which had -25.9 ± 0.4 kcal/mol for the top binding mode, -4.5 ± 0.8 kcal/mol for 

the bottom binding mode, and -4.5 ± 0.5 kcal/mol for the side binding mode. Overall 
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binding energies of the representative trajectories also showed that the top binding pose 

was the most stable as the two trajectories that ended in the top binding pose exhibited 

MM-PBSA values of -25 kcal/mol in comparison to the bottom or side binding MM-

PBSA values of -10 kcal/mol. Additionally, intercalation at the 5’-end of the G-

quadruplex structure was observed for the top binding pose. Thus, we propose that the 

ability for the ligand to bind in a planar orientation relative to the G-quadruplex is more 

energetically favorable thus making the top binding mode the most favorable. 

Our coarse-grained MSM procedure, used in our previous work(Mulholland et al., 

2020), clusters into a handful of “macrostates” directly and skips over the experimentally 

unverifiable thousand “microstates”. The expected convergence time of the implied 

timescales should be significantly greater than that of a model with a greater number of 

clusters. This results in a coarser grained model that trades finer detail for greater 

experimental testability and easier human understanding (Pande et al., 2010). It is likely 

that directly clustering into “macrostates” still maintains the integrity of the MSM as 

verification through the Chapman-Kolmogorov test (Figure 7) indicates that the model 

closely resembles the observed simulation data. 

The interstate fluxes (Figure 8) indicate that the favored transition pathway is 

from unbound to top binding, though the pathways from unbound to side binding to top 

binding and unbound to bottom binding to side binding to top binding play a lesser but 

non-negligible role. This is supported by the mean-first passage time calculations which 

indicate that the unbound directly to top binding pathway is the fastest (1.6 ± 0.2 μs) 

while the other two pathways are several microseconds slower. The pathway from the 

unbound state directly to the final (top) binding state is indicative of the induced fit 
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theory while the other two pathways that selectively bind to the side or the bottom 

pockets suggest that the system follows the conformational selection theory. We can see 

from the observed transitions (Figure 8) that the number of transitions for both the 

induced fit and conformational selection pathways are relatively similar in abundance, 

thus we propose that the binding of DBD1 to 2MGN is a mixture of the two binding 

theories. 

3.6 Other Studies 

 The coarse-grained MSM analysis was performed on 40 simulation trajectories of 

the TMPyP4-G4C2 RNA G-quadruplex system (Mulholland et al., 2020). To decipher 

the kinetics pathways, a coarse-grained MSM was constructed from the 40 binding 

trajectories in a similar fashion as described previously in this thesis. Consistent with the 

thermodynamics analysis, there were three observed kinetic binding states: top, bottom, 

and side (groove). Parallel binding pathways toward stable top and bottom binding states 

were observed for the TMPyP4-RNA G-quadruplex complex system (Figure 15). We can 

observe that the transition from unbound directly to the bottom/top binding state is 

slightly faster than the parallel pathway that involves the side transition state. The 

transition time of unbound to bottom is the fastest of any pathway leading to a final 

binding state, while the transition time of unbound to top is only slightly slower. 

Transitioning from unbound to the transition state and then to a final binding state is 

approximately two-fold the time that it takes for a direct transition from unbound to a 

final binding state. The bottom and top binding poses are the final binding states which 

collectively make up approximately 75% of the simulation. The approximate interstate 

flux for unbound to bottom binding was 2:1, unbound to side binding was 1:1, unbound 
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to top binding was 3:1, side binding to top binding or bottom binding were both 

unidirectional. 

 

 

Figure 15. TMPyP4-RNA MSM. The mean first passage times between the four states 
(unbound, side transition, top, and bottom) of the TMPyP4-RNA G-quadruplex complex 
system. 
 
 
 
 In another study, four coarse-grained MSM analyses were performed in a similar 

method to what has been previously described on the ligand CX-5461 in complex with 

the MYC G-quadruplex, the c-KIT1 G-quadruplex, and human telomeric DNA, and 

duplex DNA (Sullivan et al., 2020). The MSM revealed multiple parallel pathways 

toward the most thermodynamically stable states (end stacking) in the human telomeric 

G4 system. For the human telomeric system, there were four major parallel pathways 

were observed for CX-5461: unbound to top binding, unbound to bottom binding, and 
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unbound to side binding as an intermediate state before transitioning to either a top or 

bottom binding pose. The mean first passage times between the four states are shown in 

Figure 16 where green arrows indicate the more likely transition while blue arrows 

indicate a less likely transition. The top (37.8%) and bottom (20.8%) binding poses are 

the most thermodynamically favorable binding states and collectively make up 

approximately 58.5% of the simulation. Our calculated first mean passage times indicated 

that the pathway from unbound directly to the top binding state is slightly faster (3.3 µs) 

than unbound directly to the bottom binding state (4 µs) and both the transition states 

starts unbound and going from the side to top (1.2 µs + 3.1 µs = 4.3 µs) and side to 

bottom (1.2 µs + 5.7 µs = 6.9 µs) transition states. The approximate interstate flux for 

unbound to top binding was 1:15, unbound to side binding was 3:5, unbound to bottom 

binding was 2:3, side binding to top binding was unidirectional from side binding to top 

binding, and side binding to bottom binding was 20:1. 
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Figure 16. CX-5/human telomeric DNA MSM. The mean first passage times between the 
four states (unbound, side transition, top, and bottom) of the human telomeric DNA G-
quadruplex and CX-5461 complex system. 
 
 
 

The next MSM revealed multiple parallel pathways toward the most 

thermodynamically favorable top binding mode in the c-KIT1 system. The c-KIT1 G4 

system shows three major parallel pathways leading to one thermodynamically favorable 

top binding state: unbound to top binding, and unbound to side binding as an intermediate 

state before transitioning to a top binding pose, and unbound to bottom binding before 

transitioning to a side binding pose and finally transitioning to a top binding pose. The 

mean first passage times between the three states are shown in Figure 17 where green 

arrows indicate the more likely transition while blue arrows indicate a less likely 

transition. Each of the pathways led to a thermodynamically favorable top binding state 

which accounted for 53.5 % of the simulation period and occurred in 1.2 µs. The 

unbound to side to top pathway was the next fastest totaling 2.7 µs. The slowest pathway 

was from the unbound state to the side and finally ending in a top binding mode which 
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totaled 6.8 µs. Important to note is that we believe the MSM determined that the bottom 

binding mode is not a thermodynamically favorable state in this system because of the 

limited simulation period, however we expect that if the simulations were extended 

further, a thermodynamically favorable bottom binding site would be seen. The 

approximate interstate flux for unbound to top binding was 3:4, unbound to side binding 

was 3:4, unbound to bottom binding was 1:10, side binding to top binding was 1:30, and 

side binding to bottom binding was 1:50, and top binding to bottom binding was 1:4.  

  



www.manaraa.com

57 

 

Figure 17. CX-5/c-KIT1 MSM. The mean first passage times between the four states 
(unbound, side transition, top, and bottom) of the c-KIT1 DNA G-quadruplex and CX-
5461 complex system. 
 
 
 

The next MSM revealed multiple parallel pathways toward the most 

thermodynamically stable top binding mode in the MYC system, whereas the bottom 

stacking mode appears to be an off-pathway intermediate. For the 2MGN system, three 

major parallel pathways were observed: unbound to top, unbound to bottom, and 

unbound to side transition and ending in a top binding mode. Unique to this system, the 

bottom binding pose appears to be highly unstable and likely acts as an off pathway 

intermediate state where CX-5461 binds to the bottom from an unbound state and once 

again goes back to the unbound state and follows one of the other pathways leading to the 

thermodynamically favorable top binding mode. The mean first passage times between 
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these are shown in Figure 18 where green arrows indicate the more likely transition while 

blue arrows indicate a less likely transition. The top (59.6%) and bottom (9.5%) binding 

poses collectively make up approximately 69% of the simulation. The transition from 

unbound directly to the top binding state (1.4 µs) is slightly faster than from unbound to 

the top binding state through the side transition state (2.4 µs). Transition from the 

unbound to the bottom binding pose is significantly slower calculated to be 16.7 µs. The 

approximate interstate flux for unbound to top binding was 1:5, unbound to side binding 

was 1:1, unbound to bottom binding was 1:4, and side binding to top binding was 1:3. 
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Figure 18. CX-5/MYC MSM. The mean first passage times between the four states 
(unbound, side transition, top, and bottom) of the MYC DNA G-quadruplex and CX-
5461 complex system. Starred (*) transition times indicate mean first passage times that 
were calculated with relatively minimal transition data and may prove less reliable. 
 
 
 

The MSM revealed multiple parallel pathways toward the most 

thermodynamically stable groove binding mode in the duplex system. The MSM plot of 

the duplex system and mean first passage times are presented in Figure 19 where green 

arrows indicate the more likely transition while blue arrows indicate a less likely 

transition. This plot shows the major pathways for the duplex system include one 

thermodynamically favorable groove biding state (25.7%) as well top and bottom states 

that end up in a groove binding mode. Since the groove binding mode is the only one of 

physiological relevance for long chromosomal DNA, pathways leading to this mode are 

discussed here. The pathway from unbound directly to the groove binding state is slightly 
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faster (2.0 µs) than from unbound to the transition states (top: 4.7 µs or bottom: 5.0 µs) 

leading to the groove binding and is significantly more abundant. 

 
 
 

 

Figure 19. CX-5/DNA duplex MSM. The mean first passage times between the four 
states (unbound, groove binding, and top and bottom terminal binding) of the DNA 
duplex and CX-5461 complex system.  
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Chapter 4 

Conclusion and Future Directions 

4.1 Conclusion 

 The coarse-grained MSM analysis is a powerful tool that maintains the 

Markovian property of a traditional MSM while maintaining experimentally verifiable 

clusters. Traditional MSM analyses cluster into thousands of experimentally unverifiable 

“microstates” and are typically used for processes such as protein folding. In my 

experience, many common implementations such as MSMBuilder or PyEmma provide 

less than stellar results when attempting to create an MSM for ligand-receptor binding 

systems. However, the coarse-grained MSM analysis solves the issue of the 

experimentally unverifiable clusters and is designed specifically to work with ligand-

receptor binding systems while still maintaining applicability to other biological 

processes. It builds upon the high resolution spatial and temporal information provided 

by MD simulations and enables the user to obtain invaluable kinetic information as well 

as binding mechanism information. The coarse-grained MSM analysis was built to be 

used with minimal technical knowledge and is applicable to a wide variety of systems. 

We have used the coarse-grained MSM analysis in several studies and expect that it can 

be applied to many more (Chen et al., 2020; Mulholland et al., 2020; Sullivan et al., 

2020). 

4.2 Future Directions 

There are several improvements that I have considered for the future of the 

coarse-grained MSM analysis. First, the code is primarily performed through the R 

graphical interface, but a custom designed user interface would make the software even 
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more accessible to users with minimal technical knowledge. Currently, some of the more 

complex portions of the code require the user to follow fairly complex instructions that 

could be minimized through the use of a custom graphical interface. Second, portions of 

the code are currently run through VMD which requires the user to know at least VMD 

technical knowledge in order to proceed. It is definitely possible to create a method that 

would bypass the VMD usage, but development of such a method would be fairly 

complex. In theory, a custom graphical interface could be designed such that the user 

could simply click on the structures to designate the ligand-receptor system. Third, there 

are definitely optimization improvements that can be performed on the code itself to 

decrease the run time or hardware requirements. The current software is already 

reasonably fast, but further improvements are definitely possible. Last, this coarse-

grained MSM analysis was originally designed for analyzing ligand-receptor binding. 

While this analysis can be applied to other biological processes such as protein folding, I 

have observed that the data obtained is slightly less ideal as compared to that of our 

ligand-receptor binding analyses. Additionally, our analyses were typically of simulations 

that consisted of less than 100,000 frames in total and could be performed in a few hours 

on a non-specialized computer. When increasing the number of frames by various orders 

of magnitude, the run time of the analysis also increased by even greater orders of 

magnitude. Further increasing the robustness of the code could improve the range of 

application of the coarse-grained MSM analysis.  
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Appendix A 

main.R 

Pertinent instructions and other comments are shown in green after the ‘#’ 

symbols. These are not part not the code itself and only serve to help the user. 

 
 
 

 

Figure A1. Code in main.R. This figure shows all of the code present in main.R.  
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Appendix B 

functions.R 

Pertinent instructions and other comments are shown in green after the ‘#’ 

symbols. These are not part not the code itself and only serve to help the user. Table B1 

includes a helpful list of all functions present in functions.R. 

 
 
 
Table B1 

Functions present in functions.R  

Functions given sequentially with its primary purpose. 
Function Name Lines Primary Purpose 
install_necessary_R_packages 5-11 Installs necessary R packages, if not installed 
create_directories 13-20 Creates subdirectories in working directory 
load_config 22-29 Loads configuration settings 
merge_trajectories 31-38 Calls merge_traj (Appendix C) and stores results 
calculate_features 40-47 Calls calculate_rmsd (Appendix C) and 

calculate_CoM (Appendix C) 
pre_clustering 49-61 Preprocesses feature data into “rmsd_prep.txt” 
rmsd_prep 63-72 Subfunction for pre_clustering 
remove_unbound_frames 74-83 Removes unbound frames 
clustering 85-90 Calls kmeans (Appendix C) 
plot_SI 92-109 Plots the silhouette indices from k-means results 
representatives 111-116 Calls find_representative_frames and 

get_representatives (Appendix C) 
find_representative_frames 118-199 Finds the representative frames of each cluster 
frames_per_cluster 201-215 Calculates frames per cluster 
validation 217-221 Calls validation_frames and cluster_validation 

(Appendix C) 
validation_frames 223-245 Outputs all frames of each cluster in 

cluster_frames directory as text files 
recombine 247-272 Recombines the unbound frames with cluster data 
post_clustering 274-278 Calls recombine 
combine_clusters 280-317 Performs cluster_combination 
finalize_clusters 319-321 Outputs final clusters to “combined_clusters.txt” 
post_cluster_analysis 323-335 Reobtain frames per cluster, representatives, and 

validation 
calculate_transition_matrices 337-343 Calls prep_data, create_tpt, and normalize_tpt 
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Table B1 (continued) 

Function Name Lines Primary Purpose 
prep_data 345-351 Prepares data for 

subsequent functions 
create_tpt 353-386 Outputs transition matrices 

into TPT directory as text 
files 

normalize_tpt 388-434 Outputs symmetric 
matrices and normalized 
matrices into TPT directory 
as text files 

implied_timescales 436-500 Calculates and plots the 
implied timescales 

Chapman-Kolmogorov 502-627 Performs the Chapman-
Kolmogorov test 

MFPT 629-700 Builds and solves the 
MFPT system of equations 

hush 702-706 Suppresses unnecessary 
output 

mfpt_stdev 708-729 Calculates standard 
deviations for MFPT 

network 731-774 Builds a network model for 
transitions 

export_final 776-783 Outputs MFPT and 
standard deviations to 
“final_mfpt.txt” 
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Figure B1. Code in functions.R. This figure shows all of the code present in functions.R. 
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Figure B1 (continued)  



www.manaraa.com

74 

 

Figure B1 (continued) 
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Figure B1 (continued)  
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Figure B1 (continued). Function create_tpt depicted here does not support trajectories of 
different lengths. This was changed in a more recent version of the software but the 
updated raw code is currently inaccessible due to the COVID-19 outbreak at the time of 
this writing.  
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Figure B1 (continued)  
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Figure B1 (continued)  
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Figure B1 (continued) 
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Figure B1 (continued)  
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Appendix C 

functions.py 

Pertinent instructions and other comments are shown in green after the ‘#’ 

symbols. These are not part not the code itself and only serve to help the user. Table C1 

includes a helpful list of all functions present in functions.R. 

 
 
 
Table C1 

Functions present in functions.py 

Functions are listed in sequential order with their primary purpose. 
Function Lines Primary Purpose 
get_ligand_indices 10-20 Obtains atom indices of the ligand  
merge_traj 22-42 Merge trajectories and output to “traj.crd” 
calculate_rmsd 44-71 Calculates RMSD values 
calculate_CoM 73-121 Calculates center of mass (X, Y, Z) 
kmeans 123-142 Performs k-means clustering 
get_representatives 144-161 Outputs representatives to 

“representatives.crd” 
cluster_validation 163-186 Outputs validation trajectories to 

cluster_frames directory 
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Figure C1. Code in functions.py. This figure shows all of the code present in 
functions.py. Function merge_traj depicted here does not return the number of frames for 
each individual trajectory. This has been fixed in a more recent version of the software 
but the updated raw code is currently inaccessible due to the COVID-19 outbreak at the 
time of this writing.  
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Figure C1 (continued)  
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Figure C1 (continued)  
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Appendix D 

find_unbound_frames.tcl 

Pertinent instructions and other comments are shown in green after the ‘#’ 

symbols. These are not part not the code itself and only serve to help the user. 

 
 
 

 

Figure D1. Code in find_unbound_frames.tcl. This figure shows all of the code present in 
find_unbound_frames.tcl.   
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Appendix E 

config.txt 
 
 
 

 

Figure E1. Configuration file. This figure shows all of the variables in the configuration 
file (config.txt).   
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Appendix F 

RMSD, Atom Contacts, and Last Snapshots 

 

Figure F1. Ligand RMSD. Ligand RMSD in the 33 free ligand binding simulations of 
DBD1 to the Pu24 G-quadruplex.  
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Figure F1 (continued) 
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Figure F2. Atom contacts. Atom contacts between DBD1 and the Pu24 G-quadruplex in 
the 33 free ligand binding simulations. 
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Figure F2 (continued) 
 
 
  



www.manaraa.com

91 

 
Figure F3. Last snapshots. Last snapshot of the 33 free ligand binding simulations of 
DBD1 to the Pu24 G-quadruplex. 
  



www.manaraa.com

92 

 
Figure F3 (continued) 
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Figure F3 (continued) 
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Figure F3 (continued)  
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Appendix G 

Trajectory Snapshots 

 
 
 

 

Figure G1. Snapshots of trajectories with top final binding poses. Trajectories of the 
primary binding pathway of DBD1 to the top site of the Pu24 G-quadruplex. 
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Figure G1 (continued) 
  



www.manaraa.com

97 

 
Figure G1 (continued) 
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Figure G2. Snapshots of trajectories with top final binding poses with side transition. 
Trajectories of the secondary binding pathway of DBD1 to the top site of the Pu24 G-
quadruplex via a side binding. 
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Figure G2 (continued) 
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Figure G3. Snapshots of trajectories to side final binding poses. Trajectories of the 
binding pathway of DBD1 to the side site of the Pu24 G-quadruplex via a bottom/top 
binding.  
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Figure G4. Snapshots of trajectories with bottom final binding poses. Trajectories of the 
binding pathway of DBD1 to the bottom site of the Pu24 G-quadruplex. 
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Figure G5. Snapshots of trajectories with bottom final binding poses with side transition. 
Trajectories of the binding pathway of DBD1 to the bottom site of the Pu24 G-
quadruplex via side binding. 
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